山西省太原市杏花嶺區(qū)育英中學2024-2025學年九年級數(shù)學第一學期期末聯(lián)考試題含解析_第1頁
山西省太原市杏花嶺區(qū)育英中學2024-2025學年九年級數(shù)學第一學期期末聯(lián)考試題含解析_第2頁
山西省太原市杏花嶺區(qū)育英中學2024-2025學年九年級數(shù)學第一學期期末聯(lián)考試題含解析_第3頁
山西省太原市杏花嶺區(qū)育英中學2024-2025學年九年級數(shù)學第一學期期末聯(lián)考試題含解析_第4頁
山西省太原市杏花嶺區(qū)育英中學2024-2025學年九年級數(shù)學第一學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知圓錐的底面半徑為5,母線長為13,則這個圓錐的全面積是()A. B. C. D.2.用16米長的鋁制材料制成一個矩形窗框,使它的面積為9平方米,若設(shè)它的一邊長為x,根據(jù)題意可列出關(guān)于x的方程為()A. B. C. D.3.若,則一次函數(shù)與反比例函數(shù)在同一坐標系數(shù)中的大致圖象是()A. B.C. D.4.若方程(m﹣1)x2﹣4x=0是關(guān)于x的一元二次方程,則m的取值范圍是()A.m≠1 B.m=1 C.m≠0 D.m≥15.用一圓心角為120°,半徑為6cm的扇形做成一個圓錐的側(cè)面,這個圓錐的底面的半徑是()A.1cm B.2cm C.3cm D.4cm6.下列圖案中既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.7.布袋中有紅、黃、藍三種顏色的球各一個,從中摸出一個球之后不放回布袋,再摸第二個球,這時得到的兩個球的顏色中有“一紅一黃”的概率是()A. B. C. D.8.如圖,將一把兩邊都帶有刻度的直尺放在半圓形紙片上,使其一邊經(jīng)過圓心O,另一邊所在直線與半圓相交于點D、E,量出半徑OC=5cm,弦DE=8cm,則直尺的寬度是()A.4cm B.3cm C.2cm D.1cm9.下列說法中正確的是(

)A.弦是直徑 B.弧是半圓 C.半圓是圓中最長的弧 D.直徑是圓中最長的弦10.已知有理數(shù)a,b在數(shù)軸上表示的點如圖所示,則下列式子中正確的是()A.a(chǎn)+b<0 B.a(chǎn)+b>0 C.a(chǎn)﹣b<0 D.a(chǎn)b>011.如圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤分成黑、白兩種顏色指針的位置固定,轉(zhuǎn)動的轉(zhuǎn)盤停止后,指針恰好指向白色扇形的穊率為(指針指向OA時,當作指向黑色扇形;指針指OB時,當作指向白色扇形),則黑色扇形的圓心角∠AOB=()A.40° B.45° C.50° D.60°12.已知一組數(shù)據(jù)共有個數(shù),前面?zhèn)€數(shù)的平均數(shù)是,后面?zhèn)€數(shù)的平均數(shù)是,則這個數(shù)的平均數(shù)是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,等腰△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于點D,則的值等于_____.14.如圖,是的切線,為切點,連接.若,則=__________.15.函數(shù)y=kx,y=,y=的圖象如圖所示,下列判斷正確的有_____.(填序號)①k,a,b都是正數(shù);②函數(shù)y=與y=的圖象會出現(xiàn)四個交點;③A,D兩點關(guān)于原點對稱;④若B是OA的中點,則a=4b.16.若質(zhì)量抽檢時任抽一件西服成品為合格品的概率為0.9,則200件西服中大約有_____件合格品.17.如圖,正方形ABCD的邊長為8,M是AB的中點,P是BC邊上的動點,連結(jié)PM,以點P為圓心,PM長為半徑作當與正方形ABCD的邊相切時,BP的長為______.18.如圖,正方形ABCD中,P為AD上一點,BP⊥PE交BC的延長線于點E,若AB=6,AP=4,則CE的長為_____.三、解答題(共78分)19.(8分)已知關(guān)于的方程(1)無論取任何實數(shù),方程總有實數(shù)根嗎?試做出判斷并證明你的結(jié)論.(2)拋物線的圖象與軸兩個交點的橫坐標均為整數(shù),且也為正整數(shù).若,是此拋物線上的兩點,且,請結(jié)合函數(shù)圖象確定實數(shù)的取值范圍.20.(8分)已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB,DC、DC(或它們的延長線)于點M,N.(1)當∠MAN繞點A旋轉(zhuǎn)到(如圖1)時,求證:BM+DN=MN;(2)當∠MAN繞點A旋轉(zhuǎn)到如圖2的位置時,猜想線段BM,DN和MN之間又有怎樣的數(shù)量關(guān)系呢?請直接寫出你的猜想。(不需要證明)21.(8分)如圖,在?ABCD中過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.(1)求證:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的長.22.(10分)(1)計算(2)解方程.23.(10分)如圖,AB是的直徑,點C,D在上,且BD平分∠ABC.過點D作BC的垂線,與BC的延長線相交于點E,與BA的延長線相交于點F.(1)求證:EF與相切:(2)若AB=3,BD=,求CE的長.24.(10分)小明想要測量一棵樹DE的高度,他在A處測得樹頂端E的仰角為30°,他走下臺階到達C處,測得樹的頂端E的仰角是60°.已知A點離地面的高度AB=2米,∠BCA=30°,且B,C,D三點在同一直線上.求樹DE的高度;25.(12分)如圖,矩形ABCD的對角線AC、BD交于點O,∠AOD=60°,AB=,AE⊥BD于點E,求OE的長.26.今年我縣為了創(chuàng)建省級文明縣城,全面推行中小學?!吧鐣髁x核心價值觀”進課堂.某校對全校學生進行了檢測評價,檢測結(jié)果分為(優(yōu)秀)、(良好)、(合格)、(不合格)四個等級.并隨機抽取若干名學生的檢測結(jié)果作為樣本進行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計表和統(tǒng)計圖.請根據(jù)統(tǒng)計表和統(tǒng)計圖提供的信息,解答下列問題:(1)本次隨機抽取的樣本容量為__________;(2)統(tǒng)計表中_________,_________.(3)若該校共有學生5000人,請你估算該校學生在本次檢測中達到“(優(yōu)秀)”等級的學生人數(shù).

參考答案一、選擇題(每題4分,共48分)1、B【分析】先根據(jù)圓錐側(cè)面積公式:求出圓錐的側(cè)面積,再加上底面積即得答案.【詳解】解:圓錐的側(cè)面積=,所以這個圓錐的全面積=.故選:B.本題考查了圓錐的有關(guān)計算,屬于基礎(chǔ)題型,熟練掌握圓錐側(cè)面積的計算公式是解答的關(guān)鍵.2、B【分析】一邊長為x米,則另外一邊長為:8-x,根據(jù)它的面積為9平方米,即可列出方程式.【詳解】一邊長為x米,則另外一邊長為:8-x,

由題意得:x(8-x)=9,

故選:B.此題考查由實際問題抽相出一元二次方程,解題的關(guān)鍵讀懂題意列出方程式.3、C【分析】根據(jù)ab>0,可得a、b同號,結(jié)合一次函數(shù)及反比例函數(shù)的特點進行判斷即可.【詳解】解:.A.根據(jù)一次函數(shù)可判斷a>0,b<0,即ab<0,故不符合題意,

B.根據(jù)反比例函數(shù)可判斷ab<0,故不符合題意,

C.根據(jù)一次函數(shù)可判斷a<0,b<0,即ab>0,根據(jù)反比例函數(shù)可判斷ab>0,故符合題意,

D.根據(jù)反比例函數(shù)可判斷ab<0,故不符合題意.

故選:C.本題考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)是解決問題的關(guān)鍵.4、A【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程可得m?1≠0,再解即可.【詳解】解:由題意得:m﹣1≠0,解得:m≠1,故選:A.此題主要考查了一元二次方程定義,關(guān)鍵是掌握判斷一個方程是否是一元二次方程應(yīng)注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.5、B【解析】∵扇形的圓心角為120°,半徑為6cm,∴根據(jù)扇形的弧長公式,側(cè)面展開后所得扇形的弧長為∵圓錐的底面周長等于它的側(cè)面展開圖的弧長,∴根據(jù)圓的周長公式,得,解得r=2cm.故選B.考點:圓錐和扇形的計算.6、D【分析】根據(jù)中心對稱圖形以及軸對稱圖形的定義逐項判斷即可.在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形;如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形.【詳解】解:A.不是中心對稱圖形,是軸對稱圖形,此選項錯誤;B.是中心對稱圖形,不是軸對稱圖形,此選項錯誤;C.不是中心對稱圖形,是軸對稱圖形,此選項錯誤;D.既是中心對稱圖形,又是軸對稱圖形,此選項正確;故選:D.本題考查的知識點是識別中心對稱圖形以及軸對稱圖形,掌握中心對稱圖形以及軸對稱圖形的特征是解此題的關(guān)鍵.7、C【解析】解:畫樹狀圖如下:一共有6種情況,“一紅一黃”的情況有2種,∴P(一紅一黃)==.故選C.8、B【分析】過點O作OM⊥DE于點M,連接OD,根據(jù)垂徑定理“垂直于弦的直徑平分弦,并且平分弦所對的兩條弧”和勾股定理進行計算,即可求出答案.【詳解】過點O作OM⊥DE于點M,連接OD.∴DE=12∵DE=8cm,∴DM=4cm,在Rt△ODM中,∵OD=OC=5cm,∴OM=∴直尺的寬度為3cm.故答案選B.本題主要考查了垂徑定理和勾股定理,靈活運用這些定理是解答本題的關(guān)鍵.9、D【解析】試題分析:根據(jù)弦、直徑、弧、半圓的概念一一判斷即可.【解答】解:A、錯誤.弦不一定是直徑.B、錯誤.弧是圓上兩點間的部分.C、錯誤.優(yōu)弧大于半圓.D、正確.直徑是圓中最長的弦.故選D.【考點】圓的認識.10、A【分析】根據(jù)數(shù)軸判斷出a、b的符號和取值范圍,逐項判斷即可.【詳解】解:從圖上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故選項A符合題意,選項B不合題意;a﹣b>0,故選項C不合題意;ab<0,故選項D不合題意.故選:A.【知識點】本題考查了數(shù)軸、有理數(shù)的加法、減法、乘法,根據(jù)數(shù)軸判斷出a、b的符號,熟知有理數(shù)的運算法則是解題關(guān)鍵.11、B【分析】根據(jù)針恰好指向白色扇形的概率得到黑、白兩種顏色的扇形的面積比為1:7,計算即可.【詳解】解:∵指針恰好指向白色扇形的穊率為,∴黑、白兩種顏色的扇形的面積比為1:7,∴∠AOB=×360°=45°,故選:B.本題考查的知識點是求圓心角的度數(shù),根據(jù)概率得出黑、白兩種顏色的扇形的面積比為1:7是解此題的關(guān)鍵.12、C【分析】由題意可以求出前14個數(shù)的和,后6個數(shù)的和,進而得到20個數(shù)的總和,從而求出20個數(shù)的平均數(shù).【詳解】解:由題意得:(10×14+15×6)÷20=11.5,故選:C.此題考查平均數(shù)的意義和求法,求出這些數(shù)的總和,再除以總個數(shù)即可..二、填空題(每題4分,共24分)13、【分析】先證△ABC和△BDC都是頂角為36°的等腰三角形,然后證明△BDC∽△ABC,根據(jù)相似三角形的性質(zhì)即可得出結(jié)論.【詳解】∵在△ABC中,∠A=36°,AB=AC,∴∠ABC=∠ACB=72°.∵BD平分∠ABC,∴∠DBC=∠ABD=36°,∴AD=BD,∴∠BDC=72°,∴BD=BC,∴△ABC和△BDC都是頂角為36°的等腰三角形.設(shè)CD=x,AD=y,∴BC=BD=y.∵∠C=∠C,∠DBC=∠A=36°,∴△BDC∽△ABC,∴,∴,∴,解得:(負數(shù)舍去),∴.故答案為:.本題考查了相似三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.14、65°【分析】根據(jù)切線長定理即可得出AB=AC,然后根據(jù)等邊對等角和三角形的內(nèi)角和定理即可求出結(jié)論.【詳解】解:∵是的切線,∴AB=AC∴∠ABC=∠ACB=(180°-∠A)=65°故答案為:65°.此題考查的是切線長定理和等腰三角形的性質(zhì),掌握切線長定理和等邊對等角是解決此題的關(guān)鍵.15、①③④【分析】根據(jù)反比例函數(shù)、一次函數(shù)的性質(zhì)以及反比例函數(shù)系數(shù)k的幾何意義即可判斷.【詳解】解:由圖像可知函數(shù)y=kx經(jīng)過一、三象限,h函數(shù)y=,y=在一、三象限,則k>0,a>0,b>0,故①正確;由圖像可知函數(shù)y=與y=的圖像沒有交點,故②錯誤;根據(jù)正比例函數(shù)和反比例函數(shù)的圖像都是中心對稱圖像可知,A,D兩點關(guān)于原點對稱,故③正確;若B是OA的中點,軸OA=2OB,作AM⊥x軸于M,BN⊥x軸于N,∴BN∥AM,∴△BON∽△AOM,∴,∴,∴b=4a,故④正確:故答案為①③④.本題考查了相似性質(zhì)、反比例函數(shù)、一次函數(shù)的性質(zhì)以及反比例函數(shù)系數(shù)k的幾何意義,數(shù)形結(jié)合的思想是解題的關(guān)鍵16、1.【分析】用總數(shù)×抽檢時任抽一件西服成品為合格品的概率即可得出答案.【詳解】200×0.9=1,答:200件西服中大約有1件合格品故答案為:1.本題主要考查合格率問題,掌握合格產(chǎn)品數(shù)=總數(shù)×合格率是解題的關(guān)鍵.17、3或【解析】分兩種情況:與直線CD相切、與直線AD相切,分別畫出圖形進行求解即可得.【詳解】如圖1中,當與直線CD相切時,設(shè),在中,,,,,;如圖2中當與直線AD相切時,設(shè)切點為K,連接PK,則,四邊形PKDC是矩形,,,,在中,,綜上所述,BP的長為3或.【點睛】本題考查切線的性質(zhì)、正方形的性質(zhì)、勾股定理等知識,會用分類討論的思想思考問題,會利用參數(shù)構(gòu)建方程解決問題是關(guān)鍵.18、2【分析】利用同角的余角相等可得出∠ABP=∠DPF,結(jié)合∠A=∠D可得出△APB∽△DFP,利用相似三角形的性質(zhì)可求出DF的長,進而可得出CF的長,由∠PFD=∠EFC,∠D=∠ECF可得出△PFD∽△EFC,再利用相似三角形的性質(zhì)可求出CE的長.【詳解】∵四邊形ABCD為正方形,∴∠A=∠D=∠ECF=90°,AB=AD=CD=6,∴DP=AD﹣AP=1.∵BP⊥PE,∴∠BPE=90°,∴∠APB+∠DPF=90°.∵∠APB+∠ABP=90°,∴∠ABP=∠DPF.又∵∠A=∠D,∴△APB∽△DFP,∴,即,∴DF=,∴CF=.∵∠PFD=∠EFC,∠D=∠ECF,∴△PFD∽△EFC,∴=,即,∴CE=2.故答案為:2.此題考查相似三角形判定與性質(zhì)以及正方形的性質(zhì),利用相似三角形的判定定理,找出△APB∽△DFP及△PFD∽△EFC是解題的關(guān)鍵.三、解答題(共78分)19、(1)無論取任何實數(shù),方程總有實數(shù)根;證明見解析;(2).【分析】(1)由題意分當時以及當時,利用根的判別式進行分析即可;(2)根據(jù)題意令,代入拋物線解析式,并利用二次函數(shù)圖像性質(zhì)確定實數(shù)的取值范圍.【詳解】解:(1)①當時,方程為時,,所以方程有實數(shù)根;②當時,所以方程有實數(shù)根綜上所述,無論取任何實數(shù),方程總有實數(shù)根.(2)令,則,解方程,∵二次函數(shù)圖象與軸兩個交點的橫坐標均為整數(shù),且為正整數(shù)∴∴該拋物線解析式∴對稱軸∵,是拋物錢上的兩點,且∴本題考查二次函數(shù)圖像的綜合問題,熟練掌握二次函數(shù)圖像的相關(guān)性質(zhì)是解題關(guān)鍵.20、(1)見解析;(2)DN-BM=MN【分析】(1)根據(jù)題意延長CB至E使得BE=DN,連接AE,利用全等三角形判定證明△ABE≌△AND和△EAM≌△NAM,等量代換即可求證BM+DN=MN;(2)由題意在DN上截取DE=MB,連接AE,證△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根據(jù)SAS證△AMN≌△AEN,推出MN=EN即可.【詳解】解:(1)證明:如圖1,延長CB至E使得BE=DN,連接AE,∵四邊形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°=∠ABE,在△ADN和△ABE中∵AD=AB∠D=∠ABEDN=BE,△ABE≌△ADN(SAS),∴∠BAE=∠DAN,AE=AN,∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,∵∠MAN=45°,∴∠EAM=∠MAN,∵在△EAM和△NAM中AE=AN∠EAM=∠NAMAM=AM,∴△EAM≌△NAM,∴MN=ME,∵ME=BM+BE=BM+DN,∴BM+DN=MN;(2)猜想:線段BM,DN和MN之間的等量關(guān)系為:DN-BM=MN.證明:如圖2,在DN上截取DE=MB,連接AE,∵AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°-45°=45°=∠MAN,∵在△AMN和△AEN中,AM=AE,∠MAN=∠EAN,AN=AN,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN-DE=EN,∴DN-BM=MN.本題為四邊形的綜合題,考查知識點有正方形的性質(zhì)、全等三角形的判定和性質(zhì)、垂直平分線的判定和性質(zhì)等,熟練利用全等三角形判定定理以及作輔助線技巧構(gòu)造三角形全等是解題的關(guān)鍵.21、(1)證明見解析;(2).【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,證出∠C=∠AFB,即可得出結(jié)論;(2)由勾股定理求出BE,由三角函數(shù)求出AE,再由相似三角形的性質(zhì)求出AF的長.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據(jù)勾股定理得:BE=,在Rt△ADE中,AE=AD?sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.考點:相似三角形的判定與性質(zhì);平行四邊形的性質(zhì);解直角三角形.22、(1)-6;(2)【分析】(1)首先分別利用負指數(shù)冪、二次根式的化簡、特殊角的三角函數(shù)值、絕對值的性質(zhì)進行計算,然后計算加減法即可;

(2)直接分解因式即可解方程.【詳解】(1)解:原式(2)解:或本題分別考查了實數(shù)的混合運算及利用因式分解法解一元二次方程,實數(shù)的混合運算的關(guān)鍵是熟練掌握實數(shù)混合運算的法則,解方程的關(guān)鍵是會進行因式分解.23、(1)證明見解析;(2).【分析】(1)連接OD,由角平分線和等邊對等角,得到,則,即可得到結(jié)論成立;(2)連接,,,由勾股定理求出AD,然后證明,求出DE的長度,然后即可求出CE的長度.【詳解】(1)證明,如圖,連接.平分,.∵,....∵,..即.與相切.(2)如圖,連接,,.是的直徑,.在中,.∵,,.,即..∵,,,..在中,.本題考查了相似三角形的性質(zhì)和判定,勾股定理,切線的判定,圓周角定理等知識點的應(yīng)用,主要考查學生運用性質(zhì)進行推

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論