版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆甘肅省白銀市中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結(jié)BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S22.如圖1,將三角板的直角頂點放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°3.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.24.如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為()A.(,) B.(2,) C.(,) D.(,3﹣)5.下列計算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x6.?dāng)?shù)據(jù)4,8,4,6,3的眾數(shù)和平均數(shù)分別是()A.5,4 B.8,5 C.6,5 D.4,57.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中結(jié)論正確的個數(shù)是()A.1 B.2 C.3 D.48.|﹣3|的值是()A.3 B. C.﹣3 D.﹣9.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.10.計算-5+1的結(jié)果為()A.-6 B.-4 C.4 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在?ABCD中,E、F分別是AB、DC邊上的點,AF與DE相交于點P,BF與CE相交于點Q,若S△APD=16cm1,S△BQC=15cm1,則圖中陰影部分的面積為_____cm1.12.2018年貴州省公務(wù)員、人民警察、基層培養(yǎng)項目和選調(diào)生報名人數(shù)約40.2萬人,40.2萬人用科學(xué)記數(shù)法表示為_____人.13.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)圖象上的概率是.14.已知點P(a,b)在反比例函數(shù)y=的圖象上,則ab=_____.15.如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF,若∠1=50°,則∠2的度數(shù)為_______.16.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點E,若⊙O的半徑是5,CD=8,則AE=______.三、解答題(共8題,共72分)17.(8分)為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).這次調(diào)查中,一共調(diào)查了________名學(xué)生;請補(bǔ)全兩幅統(tǒng)計圖;若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔(dān)任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.18.(8分)如圖,AB是⊙O的直徑,點C為⊙O上一點,經(jīng)過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長.19.(8分)如圖,在平面直角坐標(biāo)系xOy中,函數(shù)的圖象與直線y=2x+1交于點A(1,m).(1)求k、m的值;(2)已知點P(n,0)(n≥1),過點P作平行于y軸的直線,交直線y=2x+1于點B,交函數(shù)的圖象于點C.橫、縱坐標(biāo)都是整數(shù)的點叫做整點.①當(dāng)n=3時,求線段AB上的整點個數(shù);②若的圖象在點A、C之間的部分與線段AB、BC所圍成的區(qū)域內(nèi)(包括邊界)恰有5個整點,直接寫出n的取值范圍.20.(8分)解方程:.21.(8分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應(yīng)建在離A站多少千米的地方?22.(10分)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為;賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?8分,試判斷他能否獲獎,并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.23.(12分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標(biāo)一工程隊負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù).該工程隊有兩種型號的挖掘機(jī),已知3臺型和5臺型挖掘機(jī)同時施工一小時挖土165立方米;4臺型和7臺型挖掘機(jī)同時施工一小時挖土225立方米.每臺型挖掘機(jī)一小時的施工費用為300元,每臺型挖掘機(jī)一小時的施工費用為180元.分別求每臺型,型挖掘機(jī)一小時挖土多少立方米?若不同數(shù)量的型和型挖掘機(jī)共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?24.在抗洪搶險救災(zāi)中,某地糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到?jīng)]有受洪水威脅的A,B兩倉庫,已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為60噸,B庫的容量為120噸,從甲、乙兩庫到A、B兩庫的路程和運費如表(表中“元/噸?千米”表示每噸糧食運送1千米所需人民幣)路程(千米)運費(元/噸?千米)甲庫乙?guī)旒讕煲規(guī)霢庫20151212B庫2520108若從甲庫運往A庫糧食x噸,(1)填空(用含x的代數(shù)式表示):①從甲庫運往B庫糧食噸;②從乙?guī)爝\往A庫糧食噸;③從乙?guī)爝\往B庫糧食噸;(2)寫出將甲、乙兩庫糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關(guān)系式,并求出當(dāng)從甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【點睛】考查了相似三角形的判定與性質(zhì),三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.2、D【解析】試題分析:根據(jù)平行線的性質(zhì),得∠4=∠2=50°,再根據(jù)三角形的外角的性質(zhì)∠3=∠4-∠1=50°-30°=20°.故答案選D.考點:平行線的性質(zhì);三角形的外角的性質(zhì).3、B【解析】
首先求得AB的中點D的坐標(biāo),然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標(biāo),再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標(biāo)是(3,-3).則這個圓的半徑的最小值是:=.
故選:B【點睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.4、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標(biāo)為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標(biāo)為(,).故選A.5、C【解析】
根據(jù)合并同類項法則和去括號法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項錯誤;
B.x+x=2x,故此選項錯誤;
C.-(x-1)=-x+1,故此選項正確;
D.3與x不能合并,此選項錯誤;
故選C.【點睛】本題考查了整式的加減,熟練掌握運算法則是解題的關(guān)鍵.6、D【解析】
根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù),再根據(jù)平均數(shù)的計算公式求出平均數(shù)即可【詳解】∵4出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是4;這組數(shù)據(jù)的平均數(shù)是:(4+8+4+6+3)÷5=5;故選D.7、C【解析】
試題解析:∵圖象與x軸有兩個交點,∴方程ax2+bx+c=0有兩個不相等的實數(shù)根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正確;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正確;∵當(dāng)x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③錯誤;∵由圖象可知x=﹣1時該二次函數(shù)取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正確∴正確的有①②④三個,故選C.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.【詳解】請在此輸入詳解!8、A【解析】分析:根據(jù)絕對值的定義回答即可.詳解:負(fù)數(shù)的絕對值等于它的相反數(shù),故選A.點睛:考查絕對值,非負(fù)數(shù)的絕對值等于它本身,負(fù)數(shù)的絕對值等于它的相反數(shù).9、D【解析】
設(shè)AE=x,則AB=2x,由矩形的性質(zhì)得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結(jié)果.【詳解】設(shè)AE=x,
∵四邊形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【點睛】本題考查了矩形的性質(zhì)、等腰直角三角形的判定與性質(zhì),勾股定理;熟練掌握矩形的性質(zhì)和等腰直角三角形的性質(zhì),并能進(jìn)行推理計算是解決問題的關(guān)鍵.10、B【解析】
根據(jù)有理數(shù)的加法法則計算即可.【詳解】解:-5+1=-(5-1)=-1.故選B.【點睛】本題考查了有理數(shù)的加法.二、填空題(本大題共6個小題,每小題3分,共18分)11、41【解析】試題分析:如圖,連接EF∵△ADF與△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴陰影部分的面積為S△EPF+S△EFQ=16+15=41cm1.考點:1、三角形面積,1、平行四邊形12、4.02×1.【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.13、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點:反比例函數(shù)圖象上點的坐標(biāo)特征;列表法與樹狀圖法.14、2【解析】【分析】接把點P(a,b)代入反比例函數(shù)y=即可得出結(jié)論.【詳解】∵點P(a,b)在反比例函數(shù)y=的圖象上,∴b=,∴ab=2,故答案為:2.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點,熟知反比例函數(shù)圖象上各點的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.15、65°【解析】因為AB∥CD,所以∠BEF=180°-∠1=130°,因為EG平分∠BEF,所以∠BEG=65°,因為AB∥CD,所以∠2=∠BEG=65°.16、2【解析】
連接OC,由垂徑定理知,點E是CD的中點,在直角△OCE中,利用勾股定理即可得到關(guān)于半徑的方程,求得圓半徑即可【詳解】設(shè)AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點睛】此題考查垂徑定理和勾股定理,,解題的關(guān)鍵是利用勾股定理求關(guān)于半徑的方程.三、解答題(共8題,共72分)17、(1)200;(2)答案見解析;(3).【解析】
(1)由題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);(2)根據(jù)題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數(shù)為:200×30%=60(名);則可補(bǔ)全統(tǒng)計圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與一人是喜歡跳繩、一人是喜歡足球的學(xué)生的情況,再利用概率公式即可求得答案.【詳解】解:(1)根據(jù)題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);故答案為:200;(2)C組人數(shù):200-40-70-30=60(名)B組百分比:70÷200×100%=35%如圖(3)分別用A,B,C表示3名喜歡跳繩的學(xué)生,D表示1名喜歡足球的學(xué)生;
畫樹狀圖得:∵共有12種等可能的結(jié)果,一人是喜歡跳繩、一人是喜歡足球的學(xué)生的有6種情況,∴一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率為:.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖與扇形統(tǒng)計圖.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1)證明見解析(2)【解析】
(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據(jù)勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【點睛】本題考核知識點:切線性質(zhì),銳角三角函數(shù)的應(yīng)用.解題關(guān)鍵點:由全等三角形性質(zhì)得到線段相等,根據(jù)直角三角形性質(zhì)得到相應(yīng)等式.19、(1)m=3,k=3;(2)①線段AB上有(1,3)、(2,5)、(3,7)共3個整點,②當(dāng)2≤n<3時,有五個整點.【解析】
(1)將A點代入直線解析式可求m,再代入,可求k.(2)①根據(jù)題意先求B,C兩點,可得線段AB上的整點的橫坐標(biāo)的范圍1≤x≤3,且x為整數(shù),所以x取1,2,3.再代入可求整點,即求出整點個數(shù).②根據(jù)圖象可以直接判斷2≤n<3.【詳解】(1)∵點A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵點A(1,3)在函數(shù)的圖象上,∴k=3.(2)①當(dāng)n=3時,B、C兩點的坐標(biāo)為B(3,7)、C(3,1).∵整點在線段AB上∴1≤x≤3且x為整數(shù)∴x=1,2,3∴當(dāng)x=1時,y=3,當(dāng)x=2時,y=5,當(dāng)x=3時,y=7,∴線段AB上有(1,3)、(2,5)、(3,7)共3個整點.②由圖象可得當(dāng)2≤n<3時,有五個整點.【點睛】本題考查反比例函數(shù)和一次函數(shù)的交點問題,待定系數(shù)法,以及函數(shù)圖象的性質(zhì).關(guān)鍵是能利用函數(shù)圖象有關(guān)解決問題.20、x=,x=﹣2【解析】
方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.【詳解】,則2x(x+1)=3(1﹣x),2x2+5x﹣3=0,(2x﹣1)(x+3)=0,解得:x1=,x2=﹣3,檢驗:當(dāng)x=,x=﹣2時,2(x+1)(1﹣x)均不等于0,故x=,x=﹣2都是原方程的解.【點睛】本題考查解分式方程的能力.(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解;(2)解分式方程一定注意要驗根;(3)去分母時要注意符號的變化.21、20千米【解析】
由勾股定理兩直角邊的平方和等于斜邊的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜邊相等兩次利用勾股定理得到AD2+AE2=BE2+BC2,設(shè)AE為x,則BE=10﹣x,將DA=8,CB=2代入關(guān)系式即可求得.【詳解】解:設(shè)基地E應(yīng)建在離A站x千米的地方.則BE=(50﹣x)千米在Rt△ADE中,根據(jù)勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根據(jù)勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D兩村到E點的距離相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E應(yīng)建在離A站20千米的地方.考點:勾股定理的應(yīng)用.22、(1)50,30%;(2)不能,理由見解析;(3)P=【解析】【分析】(1)由直方圖可知59.5~69.5分?jǐn)?shù)段有5人,由扇形統(tǒng)計圖可知這一分?jǐn)?shù)段人占10%,據(jù)此可得選手總數(shù),然后求出89.5~99.5這一分?jǐn)?shù)段所占的百分比,用1減去其他分?jǐn)?shù)段的百分比即可得到分?jǐn)?shù)段69.5~79.5所占的百分比;(2)觀察可知79.5~99.5這一分?jǐn)?shù)段的人數(shù)占了60%,據(jù)此即可判斷出該選手是否獲獎;(3)畫樹狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進(jìn)行求解即可.【詳解】(1)本次比賽選手共有(2+3)÷10%=50(人),“89.5~99.5”這一組人數(shù)占百分比為:(8+4)÷50×100%=24%,所以“69.5~79.5”這一組人數(shù)占總?cè)藬?shù)的百分比為:1-10%-24%-36%=30%,故答案為50,30%;(2)不能;由統(tǒng)計圖知,79.5~89.5和89.5~99.5兩組占參賽選手60%,而78<79.5,所以他不能獲獎;(3)由題意得樹狀圖如下由樹狀圖知,共有12種等可能結(jié)果,其中恰好選中1男1女的共有8種結(jié)果,故P==.【點睛】本題考查了直方圖、扇形圖、概率,結(jié)合統(tǒng)計圖找到必要信息進(jìn)行解題是關(guān)鍵.23、(1)每臺型挖掘機(jī)一小時挖土30立方米,每臺型挖據(jù)機(jī)一小時挖土15立方米;(2)共有三種調(diào)配方案.方案一:型挖據(jù)機(jī)7臺,型挖掘機(jī)5臺;方案二:型挖掘機(jī)8臺,型挖掘機(jī)4臺;方案三:型挖掘機(jī)9臺,型挖掘機(jī)3臺.當(dāng)A型挖掘機(jī)7臺,型挖掘機(jī)5臺的施工費用最低,最低費用為12000元.【解析】分析:(1)根據(jù)題意列出方程組即可;(2)利用總費用不超過12960元求出方案數(shù)量,再利用一次函數(shù)增減性求出最低費用.詳解:(1)設(shè)每臺型,型挖掘機(jī)一小時分別挖土立方米和立方米,根據(jù)題意,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑外保溫工程驗收標(biāo)準(zhǔn)
- 急救車醫(yī)療設(shè)備維護(hù)保養(yǎng)規(guī)范
- 學(xué)生心理壓力調(diào)適方法總結(jié)
- 雨污水治理工程施工技術(shù)規(guī)范
- 市場分析師崗位職責(zé)與數(shù)據(jù)報告撰寫
- 消防應(yīng)急預(yù)案蓋章(3篇)
- 工地施工方案圖解(3篇)
- 實體策劃營銷方案(3篇)
- 客戶理賠營銷方案(3篇)
- 國際企業(yè)的經(jīng)理管理制度(3篇)
- 鋼結(jié)構(gòu)制作專項施工方案
- 《民族學(xué)概論》課件
- 《遙感概論》課件
- 危險化學(xué)品泄漏處理
- 醫(yī)學(xué)一等獎《白血病》課件
- JCT587-2012 玻璃纖維纏繞增強(qiáng)熱固性樹脂耐腐蝕立式貯罐
- 金屬制品廠電泳生產(chǎn)線安全風(fēng)險分級清單
- 浙江省優(yōu)秀安裝質(zhì)量獎創(chuàng)優(yōu)計劃申報表實例
- 新時代背景下企業(yè)人力資源管理的數(shù)字化轉(zhuǎn)型探研共3篇
- 奧的斯電梯toec-40調(diào)試方法
- 化工原理(下)第4章液液萃取
評論
0/150
提交評論