重慶市渝北中學2026屆中考數(shù)學考試模擬沖刺卷含解析_第1頁
重慶市渝北中學2026屆中考數(shù)學考試模擬沖刺卷含解析_第2頁
重慶市渝北中學2026屆中考數(shù)學考試模擬沖刺卷含解析_第3頁
重慶市渝北中學2026屆中考數(shù)學考試模擬沖刺卷含解析_第4頁
重慶市渝北中學2026屆中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市渝北中學2026屆中考數(shù)學考試模擬沖刺卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差2.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:93.下列命題是假命題的是()A.有一個外角是120°的等腰三角形是等邊三角形B.等邊三角形有3條對稱軸C.有兩邊和一角對應相等的兩個三角形全等D.有一邊對應相等的兩個等邊三角形全等4.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.15.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米6.單項式2a3b的次數(shù)是()A.2 B.3 C.4 D.57.y=(m﹣1)x|m|+3m表示一次函數(shù),則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣18.如圖,?ABCD的對角線AC、BD相交于點O,且AC+BD=16,CD=6,則△ABO的周長是()A.10 B.14 C.20 D.229.我國古代數(shù)學家劉徽用“牟合方蓋”找到了球體體積的計算方法.“牟合方蓋”是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體.如圖所示的幾何體是可以形成“牟合方蓋”的一種模型,它的俯視圖是()A. B. C. D.10.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:x2y﹣4xy+4y=_____.12.科技改變生活,手機導航極大方便了人們的出行.如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮(zhèn)C.小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,則B、C兩地的距離是_____千米.13.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.14.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于_____.15.若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為.16.如圖,一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.17.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認為正確結論的序號都填上)三、解答題(共7小題,滿分69分)18.(10分)如圖1,拋物線y=ax2+(a+2)x+2(a≠0),與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.(1)求拋物線的解析式;(2)若PN:PM=1:4,求m的值;(3)如圖2,在(2)的條件下,設動點P對應的位置是P1,將線段OP1繞點O逆時針旋轉得到OP2,旋轉角為α(0°<α<90°),連接AP2、BP2,求AP2+的最小值.19.(5分)如圖,一個長方形運動場被分隔成A、B、A、B、C共5個區(qū),A區(qū)是邊長為am的正方形,C區(qū)是邊長為bm的正方形.列式表示每個B區(qū)長方形場地的周長,并將式子化簡;列式表示整個長方形運動場的周長,并將式子化簡;如果a=20,b=10,求整個長方形運動場的面積.20.(8分)計算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣21.(10分)一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應關系如圖所示:(1)甲乙兩地相距千米,慢車速度為千米/小時.(2)求快車速度是多少?(3)求從兩車相遇到快車到達甲地時y與x之間的函數(shù)關系式.(4)直接寫出兩車相距300千米時的x值.22.(10分)某食品廠生產一種半成品食材,產量百千克與銷售價格元千克滿足函數(shù)關系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克求q與x的函數(shù)關系式;當產量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當產量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數(shù)關系式;當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本23.(12分)某學校要印刷一批藝術節(jié)的宣傳資料,在需要支付制版費100元和每份資料0.3元印刷費的前提下,甲、乙兩個印刷廠分別提出了不同的優(yōu)惠條件.甲印刷廠提出:所有資料的印刷費可按9折收費;乙印刷廠提出:凡印刷數(shù)量超過200份的,超過部分的印刷費可按8折收費.(1)設該學校需要印刷藝術節(jié)的宣傳資料x份,支付甲印刷廠的費用為y元,寫出y關于x的函數(shù)關系式,并寫出它的定義域;(2)如果該學校需要印刷藝術節(jié)的宣傳資料600份,那么應該選擇哪家印刷廠比較優(yōu)惠?24.(14分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數(shù)為6的一個一元二次方程.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總人數(shù),結合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總人數(shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計算方法是解題的關鍵.2、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.3、C【解析】解:A.外角為120°,則相鄰的內角為60°,根據(jù)有一個角為60°的等腰三角形是等邊三角形可以判斷,故A選項正確;B.等邊三角形有3條對稱軸,故B選項正確;C.當兩個三角形中兩邊及一角對應相等時,其中如果角是這兩邊的夾角時,可用SAS來判定兩個三角形全等,如果角是其中一邊的對角時,則可不能判定這兩個三角形全等,故此選項錯誤;D.利用SSS.可以判定三角形全等.故D選項正確;故選C.4、A【解析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進行計算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).5、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.6、C【解析】分析:根據(jù)單項式的性質即可求出答案.詳解:該單項式的次數(shù)為:3+1=4故選C.點睛:本題考查單項式的次數(shù)定義,解題的關鍵是熟練運用單項式的次數(shù)定義,本題屬于基礎題型.7、B【解析】由一次函數(shù)的定義知,|m|=1且m-1≠0,所以m=-1,故選B.8、B【解析】

直接利用平行四邊形的性質得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長,進而得出答案.【詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長是:1.故選B.【點睛】平行四邊形的性質掌握要熟練,找到等值代換即可求解.9、A【解析】

根據(jù)俯視圖即從物體的上面觀察得得到的視圖,進而得出答案.【詳解】該幾何體的俯視圖是:.故選A.【點睛】此題主要考查了幾何體的三視圖;掌握俯視圖是從幾何體上面看得到的平面圖形是解決本題的關鍵.10、B【解析】

設男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【詳解】設男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應用,根據(jù)題意找出等量關系列出方程是解答本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、y(x-2)2【解析】

先提取公因式y(tǒng),再根據(jù)完全平方公式分解即可得.【詳解】原式==,故答案為.12、3【解析】

作BE⊥AC于E,根據(jù)正弦的定義求出BE,再根據(jù)正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應用-方向角問題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.13、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質.14、40°【解析】

由∠A=30°,∠APD=70°,利用三角形外角的性質,即可求得∠C的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠B的度數(shù).【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對的圓周角,∴∠B=∠C=40°.故答案為40°.【點睛】此題考查了圓周角定理與三角形外角的性質.此題難度不大,解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等定理的應用.15、0或-1?!窘馕觥坑捎跊]有交待是二次函數(shù),故應分兩種情況:當k=0時,函數(shù)是一次函數(shù),與x軸僅有一個公共點。當k≠0時,函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個公共點,則有兩個相等的實數(shù)根,即。綜上所述,若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為0或-1。16、1【解析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據(jù)題意設出點A的坐標,然后根據(jù)一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進而求得k的值即可.【詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設點A的坐標為(1a,a),∵一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【點睛】本題考查了正切,反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.17、②③④【解析】

①可用特殊值法證明,當為的中點時,,可見.②可連接,交于點,先根據(jù)證明,得到,根據(jù)矩形的性質可得,故,又因為,故,故.③先證明,得到,再根據(jù),得到,代換可得.④根據(jù),可知當取最小值時,也取最小值,根據(jù)點到直線的距離也就是垂線段最短可得,當時,取最小值,再通過計算可得.【詳解】解:①錯誤.當為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質,全等三角形與相似三角形的性質與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關知識點是解答關鍵.三、解答題(共7小題,滿分69分)18、(1);(2)m=3;(3)【解析】

(1)本題需先根據(jù)圖象過A點,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由條件可得到關于m的方程,則可求得m的值;(3)在y軸上取一點Q,使,可證的△P2OB∽△QOP2,則可求得Q點坐標,則可把AP2+BP2轉換為AP2+QP2,利用三角形三邊關系可知當A、P2、Q三點在一條線上時,有最小值,則可求出答案.【詳解】解:(1)∵A(4,0)在拋物線上,∴0=16a+4(a+2)+2,解得a=﹣,∴拋物線的解析式為y=;(2)∵∴令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x軸,∴△OAB∽△PAN,∴,∴,∴,∵M在拋物線上,∴PM=+2,∵PN:MN=1:3,∴PN:PM=1:4,∴,解得m=3或m=4(舍去);(3)在y軸上取一點Q,使,如圖,由(2)可知P1(3,0),且OB=2,∴,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴,∴當Q(0,)時,QP2=,∴AP2+BP2=AP2+QP2≥AQ,∴當A、P2、Q三點在一條線上時,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值為【點睛】本題考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里表示三角形的面積及線段和最小值問題,要求會用字母代替長度,坐標,會對代數(shù)式進行合理變形,難度相對較大.19、(1)(2)(3)【解析】試題分析:(1)結合圖形可得矩形B的長可表示為:a+b,寬可表示為:a-b,繼而可表示出周長;(2)根據(jù)題意表示出整個矩形的長和寬,再求周長即可;(3)先表示出整個矩形的面積,然后代入計算即可.試題解析:(1)矩形B的長可表示為:a+b,寬可表示為:a-b,∴每個B區(qū)矩形場地的周長為:2(a+b+a-b)=4a;(2)整個矩形的長為a+a+b=2a+b,寬為:a+a-b=2a-b,∴整個矩形的周長為:2(2a+b+2a-b)=8a;(3)矩形的面積為:S=(2a+b)(2a-b)=,把,代入得,S=4×202-102=4×400-100=1500.點睛:本題考查了列代數(shù)式的知識,屬于基礎題,解答本題的關鍵是結合圖形表示出各矩形的長和寬.20、(1)﹣1;(2)x=﹣1是原方程的根.【解析】

(1)直接化簡二次根式進而利用零指數(shù)冪的性質以及特殊角三角函數(shù)值進而得出答案;(2)直接去分母再解方程得出答案.【詳解】(1)原式=﹣2﹣1+2×=﹣﹣1+=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,檢驗:當x=﹣1時,x﹣3≠0,故x=﹣1是原方程的根.【點睛】此題主要考查了實數(shù)運算和解分式方程,正確掌握解分式方程的方法是解題關鍵.21、(1)10,1;(2)快車速度是2千米/小時;(3)從兩車相遇到快車到達甲地時y與x之間的函數(shù)關系式為y=150x﹣10;(4)當x=2小時或x=4小時時,兩車相距300千米.【解析】

(1)由當x=0時y=10可得出甲乙兩地間距,再利用速度=兩地間距÷慢車行駛的時間,即可求出慢車的速度;(2)設快車的速度為a千米/小時,根據(jù)兩地間距=兩車速度之和×相遇時間,即可得出關于a的一元一次方程,解之即可得出結論;(3)分別求出快車到達甲地的時間及快車到達甲地時兩車之間的間距,根據(jù)函數(shù)圖象上點的坐標,利用待定系數(shù)法即可求出該函數(shù)關系式;(4)利用待定系數(shù)法求出當0≤x≤4時y與x之間的函數(shù)關系式,將y=300分別代入0≤x≤4時及4≤x≤時的函數(shù)關系式中求出x值,此題得解.【詳解】解:(1)∵當x=0時,y=10,∴甲乙兩地相距10千米.10÷10=1(千米/小時).故答案為10;1.(2)設快車的速度為a千米/小時,根據(jù)題意得:4(1+a)=10,解得:a=2.答:快車速度是2千米/小時.(3)快車到達甲地的時間為10÷2=(小時),當x=時,兩車之間的距離為1×=400(千米).設當4≤x≤時,y與x之間的函數(shù)關系式為y=kx+b(k≠0),∵該函數(shù)圖象經過點(4,0)和(,400),∴,解得:,∴從兩車相遇到快車到達甲地時y與x之間的函數(shù)關系式為y=150x﹣10.(4)設當0≤x≤4時,y與x之間的函數(shù)關系式為y=mx+n(m≠0),∵該函數(shù)圖象經過點(0,10)和(4,0),∴,解得:,∴y與x之間的函數(shù)關系式為y=﹣150x+10.當y=300時,有﹣150x+10=300或150x﹣10=300,解得:x=2或x=4.∴當x=2小時或x=4小時時,兩車相距300千米.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一元一次方程的應用以及一次函數(shù)圖象上點的坐標特征,解題的關鍵是:(1)利用速度=兩地間距÷慢車行駛的時間,求出慢車的速度;(2)根據(jù)兩地間距=兩車速度之和×相遇時間,列出關于a的一元一次方程;(3)根據(jù)點的坐標,利用待定系數(shù)法求出函數(shù)關系式;(4)利用一次函數(shù)圖象上點的坐標特征求出當y=300時x的值.22、(1);(2);(3);當時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【解析】

(1)直接利用待定系數(shù)法求出一次函數(shù)解析式進而得出答案;(2)由題意可得:p≤q,進而得出x的取值范圍;(3)①利用頂點式求出函數(shù)最值得出答案;②利用二次函數(shù)的增減性得出答案即可.【詳解】(1)設q=kx+b(k,b為常數(shù)且k≠0),當x=2時,q=12,當x=4時,q=10,代入解析式得:,解得:,∴q與x的函數(shù)關系式為:q=﹣x+14;(2)當產量小于或等于市場需求量時,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①當產量大于市場需求量時,可得4<x≤10,由題意得:廠家獲得的利潤是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵當x時,y隨x的增加

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論