2025年湖南省耒陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)測(cè)評(píng)試題(解析卷)_第1頁(yè)
2025年湖南省耒陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)測(cè)評(píng)試題(解析卷)_第2頁(yè)
2025年湖南省耒陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)測(cè)評(píng)試題(解析卷)_第3頁(yè)
2025年湖南省耒陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)測(cè)評(píng)試題(解析卷)_第4頁(yè)
2025年湖南省耒陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)測(cè)評(píng)試題(解析卷)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省耒陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,長(zhǎng)方形紙片ABCD中,AB=3cm,AD=9cm,將此長(zhǎng)方形紙片折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)H的位置,折痕為EF,則△ABE的面積為(

)A.6cm2 B.8cm2 C.10cm2 D.12cm22、如圖,在中,,cm,cm,點(diǎn)、分別在、邊上.現(xiàn)將沿翻折,使點(diǎn)落在點(diǎn)處.連接,則長(zhǎng)度的最小值為(

)A.0 B.2 C.4 D.63、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點(diǎn)C落在斜邊AB上的點(diǎn)E處,則CD長(zhǎng)為(

)A. B. C. D.4、有一個(gè)邊長(zhǎng)為1的正方形,以它的一條邊為斜邊,向外作一個(gè)直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個(gè)正方形,稱為第一次“生長(zhǎng)”(如圖1);再分別以這兩個(gè)正方形的邊為斜邊,向外各自作一個(gè)直角三角形,然后分別以這兩個(gè)直角三角形的直角邊為邊,向外各作一個(gè)正方形,稱為第二次“生長(zhǎng)”(如圖2)……如果繼續(xù)“生長(zhǎng)”下去,它將變得“枝繁葉茂”,請(qǐng)你算出“生長(zhǎng)”了2021次后形成的圖形中所有的正方形的面積和是(

)A.1 B.2020 C.2021 D.20225、《九章算術(shù)》被尊為古代數(shù)學(xué)“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺.問(wèn)徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個(gè)木材,鋸口深等于1寸,鋸道長(zhǎng)1尺,則圓形木材的直徑是(

)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸6、如圖是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形的兩直角邊分別是a、b,且,大正方形的面積是9,則小正方形的面積是(

)A.3 B.4 C.5 D.67、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,臺(tái)風(fēng)過(guò)后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長(zhǎng)16m,你能求出旗桿在離底部________m位置斷裂.2、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.3、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是.4、等腰△ABC中,AB=AC=10cm,BC=12cm,則BC邊上的高是_______cm.5、《九章算術(shù)》中有“折竹抵地”問(wèn)題:“今有竹高一丈,末折抵地,去根三尺,問(wèn)折者高幾何?”題意是:有一根竹子原來(lái)高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問(wèn)折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為_(kāi)_____.6、如圖,在正方形網(wǎng)格中,點(diǎn)A,B,C,D,E是格點(diǎn),則∠ABD+∠CBE的度數(shù)為_(kāi)____________.

7、如圖,鐵路MN和公路PQ在O點(diǎn)處交匯,公路PQ上A處點(diǎn)距離O點(diǎn)240米,距離MN120米,如果火車(chē)行駛時(shí),周?chē)鷥砂倜滓詢?nèi)會(huì)受到噪音的影響,那么火車(chē)在鐵路MN上沿ON方向,以144千米/時(shí)的速度行駛時(shí),A處受噪音影響的時(shí)間是_______s8、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來(lái),蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為_(kāi)_______米三、解答題(7小題,每小題10分,共計(jì)70分)1、已知:在中,點(diǎn)在直線上,點(diǎn)在同一條直線上,且,【問(wèn)題初探】(1)如圖1,若平分,求證:.請(qǐng)依據(jù)以下的簡(jiǎn)易思維框圖,寫(xiě)出完整的證明過(guò)程.【變式再探】(2)如圖2,若平分的外角,交的延長(zhǎng)線于點(diǎn),問(wèn):和的數(shù)量關(guān)系發(fā)生改變了嗎?若改變,請(qǐng)寫(xiě)出正確的結(jié)論,并證明;若不改變,請(qǐng)說(shuō)明理由.【拓展運(yùn)用】(3)如圖3,在的條件下.若,求的長(zhǎng)度.2、如圖,把長(zhǎng)方形紙片沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)試說(shuō)明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說(shuō)明理由.3、超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹(shù)林路段,嘗試用自己所學(xué)的知識(shí)檢測(cè)車(chē)速,觀測(cè)點(diǎn)設(shè)在到公路l的距離為100米的P處.這時(shí),一輛富康轎車(chē)由西向東勻速駛來(lái),測(cè)得此車(chē)從A處行駛到B處所用的時(shí)間為3秒,并測(cè)得∠APO=60°,∠BPO=45°,試判斷此車(chē)是否超過(guò)了每小時(shí)80千米的限制速度?4、如圖,已知和中,,,,點(diǎn)C在線段BE上,連接DC交AE于點(diǎn)O.(1)DC與BE有怎樣的位置關(guān)系?證明你的結(jié)論;(2)若,,求DE的長(zhǎng).5、我市《道路交通管理?xiàng)l例》規(guī)定:小汽車(chē)在城市街道上的行駛速度不得超過(guò)60km/h.如圖,一輛小汽車(chē)在一條城市街道上沿直道行駛,某一時(shí)刻剛好行駛到車(chē)速檢測(cè)點(diǎn)A正前方30m的C處,2秒后又行駛到與車(chē)速檢測(cè)點(diǎn)A相距50m的B處.請(qǐng)問(wèn)這輛小汽車(chē)超速了嗎?若超速,請(qǐng)求出超速了多少?6、如圖所示的一塊地,已知,,,,,求這塊地的面積.7、有一只喜鵲在一棵高3米的小樹(shù)的樹(shù)梢上覓食,它的巢筑在距離該樹(shù)24米,高為14米的一棵大樹(shù)上,且巢離大樹(shù)頂部為1米,這時(shí),它聽(tīng)到巢中幼鳥(niǎo)求助的叫聲,立刻趕過(guò)去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?-參考答案-一、單選題1、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點(diǎn)】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.2、C【解析】【分析】當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長(zhǎng)度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結(jié)論.【詳解】解:當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長(zhǎng)度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點(diǎn)】本題考查了翻折變換(折疊問(wèn)題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.3、A【解析】【分析】先根據(jù)勾股定理求得AB的長(zhǎng),再根據(jù)折疊的性質(zhì)求得AE,BE的長(zhǎng),從而利用勾股定理可求得CD的長(zhǎng).【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質(zhì)得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設(shè)CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理等知識(shí);熟記折疊性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)題意可得每“生長(zhǎng)”一次,面積和增加1,據(jù)此即可求得“生長(zhǎng)”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長(zhǎng)”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長(zhǎng)”了2次后形成的圖形中所有的正方形面積和為3,“生長(zhǎng)”了3次后形成的圖形中所有正方形的面積和為4,……“生長(zhǎng)”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點(diǎn)】本題考查了勾股數(shù)規(guī)律問(wèn)題,找到規(guī)律是解題的關(guān)鍵.5、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設(shè)圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進(jìn)而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點(diǎn),則O、C、D三點(diǎn)共線,OC⊥AB,∴AC=BC=AB=5(寸),設(shè)圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點(diǎn)】本題主要考查了垂徑定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.6、A【解析】【分析】觀察圖形可知,小正方形的面積=大正方形的面積?4個(gè)直角三角形的面積,利用已知(a+b)2=15,大正方形的面積為9,可以得出直角三角形的面積,進(jìn)而求出答案.【詳解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面積為:a2+b2=9,∴2ab=15?9=6,即ab=3,∴直角三角形的面積為:,∴小正方形的面積為:,故選:A.【考點(diǎn)】此題主要考查了完全平方公式及勾股定理的應(yīng)用,熟練應(yīng)用完全平方公式及勾股定理是解題關(guān)鍵.7、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時(shí)還需驗(yàn)證兩小邊的平方和是否等于最長(zhǎng)邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項(xiàng)符合題意;B、42+52≠62,不是勾股數(shù),故此選項(xiàng)不合題意;C、22+32≠42,不是勾股數(shù),故此選項(xiàng)不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項(xiàng)不合題意;故選:A.【考點(diǎn)】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).二、填空題1、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.2、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點(diǎn)】本題考查勾股定理、完全平方公式的變形求值、三角形面積計(jì)算的運(yùn)用,熟知勾股定理是解題的關(guān)鍵.3、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點(diǎn):折疊的性質(zhì),勾股定理點(diǎn)評(píng):折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)的連線段被折痕垂直平分.4、8【解析】【詳解】如圖,AD是BC邊上的高線.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案為8.5、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長(zhǎng)為尺,根據(jù)題意可列方程為:.故答案為:.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫(huà)出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.6、45°【解析】【分析】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識(shí),求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.7、8【解析】【分析】過(guò)點(diǎn)A作AC⊥ON,根據(jù)題意可知AC的長(zhǎng)與200米相比較,發(fā)現(xiàn)受到影響,然后過(guò)點(diǎn)A作AD=AB=200米,求出BD的長(zhǎng)即可得出居民樓受噪音影響的時(shí)間.【詳解】解:如圖:過(guò)點(diǎn)A作AC⊥ON,AB=AD=200米,∵公路PQ上A處點(diǎn)距離O點(diǎn)240米,距離MN120米,∴AC=120米,當(dāng)火車(chē)到B點(diǎn)時(shí)對(duì)A處產(chǎn)生噪音影響,此時(shí)AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小時(shí)=40米/秒,∴影響時(shí)間應(yīng)是:320÷40=8秒.故答案為:8.【考點(diǎn)】本題考查勾股定理的應(yīng)用.根據(jù)題意構(gòu)建直角三角形是解題關(guān)鍵.8、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析

(2);理由見(jiàn)解析

(3)【解析】【分析】(1)根據(jù)ASA證明得BE=BC,得,進(jìn)一步可得結(jié)論;(2)根據(jù)ASA證明得BE=BC,得;(3)連結(jié),分別求出∠AEB=∠ADE=∠ACB=22.5°,再證明AE=CD,∠ADC=90°,由勾股定理可得AC,由EC=EA+AC可得結(jié)論.【詳解】解:(1)證明平分,在和中,,;.理由:平分,在和中,,.連結(jié),,,,且,由得,,,.【考點(diǎn)】此題主要考查了全等三角形的判定與性質(zhì),勾股定理等知識(shí),連接AD是解答此題的關(guān)鍵.2、(1)證明見(jiàn)解析;(2),,之間的關(guān)系是.理由見(jiàn)解析.【解析】【分析】(1)根據(jù)折疊的性質(zhì)、平行的性質(zhì)及等角對(duì)等邊即可說(shuō)明;(2)根據(jù)折疊的性質(zhì)將AE、AB、BF都轉(zhuǎn)化到直角三角形中,由勾股定理可得,,之間的關(guān)系.【詳解】(1)由折疊的性質(zhì),得,,在長(zhǎng)方形紙片中,,∴,∴,∴,∴.(2),,之間的關(guān)系是.理由如下:由(1)知,由折疊的性質(zhì),得,,.在中,,所以,所以.【考點(diǎn)】本題主要考查了勾股定理,靈活利用折疊的性質(zhì)進(jìn)行線段間的轉(zhuǎn)化是解題的關(guān)鍵.3、此車(chē)超過(guò)每小時(shí)80千米的限制速度.【解析】【分析】首先,根據(jù)在直角三角形BPO中,∠BPO=45°,可得到BO=PO=100m,再根據(jù)在直角三角形APO中,∠APO=60°,運(yùn)用三角函數(shù)值,可得到AO=100,根據(jù)AB=AO-BO可求得AB的長(zhǎng);再結(jié)合速度的計(jì)算方法,求出車(chē)的速度,然后將車(chē)的速度與80千米/時(shí)進(jìn)行比較,即可得到結(jié)論.【詳解】解:在Rt△APO中,∠APO=60°,則∠PAO=30°.∴AP=2OP=200m,AO===100(m).在Rt△BOP中,∠BPO=45°,則BO=OP=100m.∴AB

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論