2024年黑龍江省綏芬河市中考數(shù)學(xué)測試卷帶答案詳解(基礎(chǔ)題)_第1頁
2024年黑龍江省綏芬河市中考數(shù)學(xué)測試卷帶答案詳解(基礎(chǔ)題)_第2頁
2024年黑龍江省綏芬河市中考數(shù)學(xué)測試卷帶答案詳解(基礎(chǔ)題)_第3頁
2024年黑龍江省綏芬河市中考數(shù)學(xué)測試卷帶答案詳解(基礎(chǔ)題)_第4頁
2024年黑龍江省綏芬河市中考數(shù)學(xué)測試卷帶答案詳解(基礎(chǔ)題)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省綏芬河市中考數(shù)學(xué)測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2、一元二次方程配方后可化為(

)A. B.C. D.3、一元二次方程,用配方法解該方程,配方后的方程為()A. B.C. D.4、已知△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或165、小穎有兩頂帽子,分別為紅色和黑色,有三條圍巾,分別為紅色、黑色和白色,她隨機拿出一頂帽子和一條圍巾戴上,恰好為紅色帽子和紅色圍巾的概率是(

)A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,是的直徑,,交于點,交于點,是的中點,連接.則下列結(jié)論正確的是(

)A. B. C. D.是的切線2、若為圓內(nèi)接四邊形,則下列哪個選項可能成立(

)A. B.C. D.3、下列說法中,正確的有()A.等弧所對的圓心角相等B.經(jīng)過三點可以作一個圓C.平分弦的直徑垂直于這條弦D.圓的內(nèi)接平行四邊形是矩形4、如圖,如果AB為⊙O的直徑,弦CD⊥AE,垂足為E,那么下列結(jié)論中,正確的是(

)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD5、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(

)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若函數(shù)圖像與x軸的兩個交點坐標(biāo)為和,則__________.2、已知關(guān)于的一元二次方程,有下列結(jié)論:①當(dāng)時,方程有兩個不相等的實根;②當(dāng)時,方程不可能有兩個異號的實根;③當(dāng)時,方程的兩個實根不可能都小于1;④當(dāng)時,方程的兩個實根一個大于3,另一個小于3.以上4個結(jié)論中,正確的個數(shù)為_________.3、《九章算術(shù)》是我國古代的數(shù)學(xué)名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設(shè)門的寬為尺,根據(jù)題意,那么可列方程___________.4、如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點為O,拋物線y=a(x﹣2)2+1(a>0)的頂點為A,過點A作y軸的平行線交拋物線于點B,連接AO、BO,則△AOB的面積為________.5、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號是__________.四、解答題(6小題,每小題10分,共計60分)1、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內(nèi),過A作軸于B,以為斜邊在其左側(cè)作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標(biāo).2、在中,,,將繞點C順時針旋轉(zhuǎn)一定的角度得到,點A、B的對應(yīng)點分別是D、E.(1)當(dāng)點E恰好在AC上時,如圖1,求的大小;(2)若時,點F是邊AC中點,如圖2,求證:四邊形BEDF是平行四邊形(請用兩組對邊分別相等的四邊形是平行四邊形)3、已知關(guān)于x的一元二次方程有兩個實數(shù)根.(1)求k的取值范圍;(2)若,求k的值.4、如圖,二次函數(shù)的圖象交軸于、兩點,交軸于點,點的坐標(biāo)為,頂點的坐標(biāo)為.求二次函數(shù)的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當(dāng)點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標(biāo);若不存在請說明理由.5、某商場經(jīng)營某種品牌的玩具,購進的單價是30元,根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務(wù),求商場銷售該品牌玩具獲利的最大利潤是多少元?6、用適當(dāng)?shù)姆椒ń夥匠蹋?1)(1-x)2-2(x-1)-35=0;(2)x2+4x-2=0.-參考答案-一、單選題1、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.既不是軸對稱圖形,又不是中心對稱圖形,故本選項不符合題意;C.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.故選:C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.2、B【解析】【分析】根據(jù)題意直接對一元二次方程配方,然后把常數(shù)項移到等號右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項移到等號的右邊;把二次項的系數(shù)化為1;等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).3、D【解析】【分析】按照配方法的步驟,移項,配方,配一次項系數(shù)一半的平方.【詳解】∵x2?2x?m=0,∴x2?2x=m,∴x2?2x+1=m+1,∴(x?1)2=m+1.故選D.【考點】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確使用.4、D【解析】【分析】由△ABC為等腰三角形,BC=6,且AB,AC為方程x2﹣8x+m=0兩根,可得兩種情況:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此時方程的判別式為0,分別求解即可.【詳解】解:∵△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此時方程的判別式為0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故選:D.【考點】本題考查了一元二次方程的判別式和等腰三角形的性質(zhì),熟練掌握知識點是解題的關(guān)鍵.5、C【解析】【分析】利用列表法或樹狀圖即可解決.【詳解】分別用r、b代表紅色帽子、黑色帽子,用R、B、W分別代表紅色圍巾、黑色圍巾、白色圍巾,列表如下:RBWrrRrBrWbbRbBbW則所有可能的結(jié)果數(shù)為6種,其中恰好為紅色帽子和紅色圍巾的結(jié)果數(shù)為1種,根據(jù)概率公式,恰好為紅色帽子和紅色圍巾的概率是.故選:C.【考點】本題考查了簡單事件的概率,常用列表法或畫樹狀圖來求解.二、多選題1、BCD【解析】【分析】首先由是的直徑,得出,推出,根據(jù)是的中點,得出是的中位線,得到,,再由,推出是的中位線,得,即是的切線,最后由假設(shè)推出不正確.【詳解】解:連接,.是的直徑,(直徑所對的圓周角是直角),;而在中,,是邊上的中線,選項符合題意);是的直徑,,,,,,選項符合題意),是的中位線,即:,是的中點,是的中位線,,.是的切線選項符合題意);只有當(dāng)是等腰直角三角形時,,故選項錯誤,不符合題意,故選:BCD.【考點】本題考查的知識點是切線的判定與性質(zhì)、等腰三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是運用等腰三角形性質(zhì)及圓周角定理及切線性質(zhì)作答.2、BD【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內(nèi)接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內(nèi)接四邊形的性質(zhì),注意:圓內(nèi)接四邊形的對角互補.3、AD【解析】【分析】根據(jù)圓的有關(guān)概念及性質(zhì),對選項逐個判斷即可.【詳解】解:A.等弧是能夠完全重合的弧,因此等弧所對的圓心角相等,正確,符合題意;B.經(jīng)過不在同一直線上的三點可以作一個圓,故原命題錯誤,不符合題意;C.平分弦(不是直徑)的直徑垂直于這條弦,故原命題錯誤,不符合題意;D.圓的內(nèi)接平行四邊形是矩形,正確,符合題意,正確的有A、D,故答案為:A、D.【考點】此題考查了圓的有關(guān)概念及性質(zhì),解題的關(guān)鍵是熟練掌握圓的相關(guān)概念以及性質(zhì).4、ABC【解析】【分析】根據(jù)垂徑定理逐個判斷即可.【詳解】解:AB為⊙O的直徑,弦CD⊥AB垂足為E,則AB是垂直于弦CD的直徑,就滿足垂徑定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正確的.根據(jù)條件可以得到AB是CD的垂直平分線,因而AC=AD.所以D是錯誤的.故選:ABC.【考點】本題主要考查的是對垂徑定理的記憶與理解,做題的關(guān)鍵是掌握垂徑定理的應(yīng)用.5、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進而對所得結(jié)論進行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當(dāng)x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運用對稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.三、填空題1、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標(biāo),即為它的圖象與x軸兩交點之間線段中點的橫坐標(biāo),即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標(biāo)為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法是解決本題的關(guān)鍵.2、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當(dāng),即時,方程有兩個不相等的實根;故①正確;當(dāng),解得:,方程有兩個同號的實數(shù)根,則當(dāng)時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當(dāng)時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學(xué)的知識進行解題.3、或【解析】【分析】設(shè)門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:設(shè)門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.4、【解析】【分析】先求得頂點A的坐標(biāo),然后根據(jù)題意得出B的橫坐標(biāo),把橫坐標(biāo)代入拋物線,得出B點坐標(biāo),從而求得A、B間的距離,最后計算面積即可.【詳解】設(shè)AB交x軸于C∵拋物線線y=a(x﹣2)2+1(a>0)的頂點為A,∴A(2,1),∵過點A作y軸的平行線交拋物線于點B,∴B的橫坐標(biāo)為2,OC=2把x=2代入得y=-3,∴B(2,-3),∴AB=1+3=4,.故答案為:4.【考點】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,求得A、B的坐標(biāo)是解題的關(guān)鍵.5、①③④【解析】【分析】利用根與系數(shù)的關(guān)系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系及根的判別式Δ=b2-4ac:當(dāng)Δ>0,方程有兩個不相等的實數(shù)根;當(dāng)Δ=0,方程有兩個相等的實數(shù)根;當(dāng)Δ<0,方程沒有實數(shù)根.四、解答題1、(1);(2)①1;②點C的坐標(biāo)是【解析】【分析】(1)將兩點分別代入,得,解方程組即可;(2)①根據(jù)AB=4,斜邊上的高為2,Q的橫坐標(biāo)為1,計算點C的橫坐標(biāo)為-1,即到y(tǒng)軸的距離為1;②根據(jù)直線PQ的解析式,設(shè)點A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代數(shù)式表示點C的坐標(biāo),代入拋物線解析式求解即可.【詳解】解:(1)將兩點分別代入,得解得.所以拋物線的解析式是.(2)①如圖2,拋物線的對稱軸是y軸,當(dāng)點A與點重合時,,作于H.∵是等腰直角三角形,∴和也是等腰直角三角形,∴,∴點C到拋物線的對稱軸的距離等于1.②如圖3,設(shè)直線PQ的解析式為y=kx+b,由,得解得∴直線的解析式為,設(shè),∴,所以.所以.將點代入,得.整理,得.因式分解,得.解得,或(與點P重合,舍去).當(dāng)時,.所以點C的坐標(biāo)是.【點評】本題考查了拋物線解析式的確定,一次函數(shù)解析式的確定,等腰直角三角形的性質(zhì),一元二次方程的解法,熟練掌握待定系數(shù)法,靈活用解析式表示點的坐標(biāo),熟練解一元二次方程是解題的關(guān)鍵.2、(1)(2)見解析【解析】【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,根據(jù)等邊對等角即可求出∠CAD=∠CDA=75°,再根據(jù)直角三角形的兩個銳角互余即可得出結(jié)論;(2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BF=AC,然后根據(jù)30°所對的直角邊是斜邊的一半即可求出AB=AC,從而得出BF=AB,然后證出△ACD和△BCE為等邊三角形,再利用HL證出△CFD≌△ABC,證出DF=BE,即可證出結(jié)論.(1)解:∵△ABC繞點C順時針旋轉(zhuǎn)α得到△DEC,點E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣∠CAD=15°.(2)證明:如圖2,連接AD,∵點F是邊AC中點,∴BF=AF=CF=AC,∵∠ACB=30°,∴AB=AC,∴BF=CF=AB,∵△ABC繞點C順時針旋轉(zhuǎn)60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,DC=AC,∴DE=BF,△ACD和△BCE為等邊三角形,∴BE=CB,∵點F為△ACD的邊AC的中點,∴DF⊥AC,在Rt△CFD和Rt△ABC中,∴Rt△CFD≌Rt△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四邊形BEDF是平行四邊形.【考點】本題主要考查的是旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和平行四邊形的判定,掌握旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和平行四邊形的判定是解決此題的關(guān)鍵.3、(1);(2)【解析】【分析】(1)根據(jù)建立不等式即可求解;(2)先提取公因式對等式變形為,再結(jié)合韋達定理求解即可.【詳解】解:(1)由題意可知,,整理得:,解得:,∴的取值范圍是:.故答案為:.(2)由題意得:,由韋達定理可知:,,故有:,整理得:,解得:,又由(1)中可知,∴的值為.故答案為:.【考點】本題考查了一元二次方程判別式、根與系數(shù)的關(guān)系、韋達定理、一元二次方程的解法等知識點,當(dāng)>0時,方程有兩個不相等的實數(shù)根;當(dāng)=0時,方程有兩個相等的實數(shù)根;當(dāng)<0時,方程沒有實數(shù)根.4、1

y=?x2+2x+3,y=?x+3;有最大值;存在滿足條件的點,其坐標(biāo)為或【解析】【分析】可設(shè)拋物線解析式為頂點式,由點坐標(biāo)可求得拋物線的解析式,則可求得點坐標(biāo),利用待定系數(shù)法可求得直線解析式;設(shè)出點坐標(biāo),從而可表示出的長度,利用二次函數(shù)的性質(zhì)可求得其最大值;過作軸,交于點,過和于,可設(shè)出點坐標(biāo),表示出的長度,由條件可證得為等腰直角三角形,則可得到關(guān)于點坐標(biāo)的方程,可求得點坐標(biāo).【詳解】解:拋物線的頂點的坐標(biāo)為,可設(shè)拋物線解析式為,點在該拋物線的圖象上,,解得,拋物線解析式為,即,點在軸上,令可得,點坐標(biāo)為,可設(shè)直線解析式為,把點坐標(biāo)代入可得,解得,直線解析式為;設(shè)點橫坐標(biāo)為,則,,,當(dāng)時,有最大值;如圖,過作軸交于點,交軸于點,作于,設(shè),則,,是等腰直角三角形,,,當(dāng)中邊上的高為時,即,,,當(dāng)時,,方程無實數(shù)根,當(dāng)時,解得或,或,綜上可知存在滿足條件的點,其坐標(biāo)為或.【考點】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、二次函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)及方程思想等知識.在中主要是待定系數(shù)法的考查,注意拋物線頂點式的應(yīng)用,在中用點坐標(biāo)表示出的長是解題的關(guān)鍵,在中構(gòu)造等腰直角三角形求得的長是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度適中.5、(1),;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論