版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆山東省濟南七校聯(lián)考中考一模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.212.下列運算正確的是()A.3a2﹣2a2=1 B.a(chǎn)2?a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b23.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.4.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=25.=()A.±4 B.4 C.±2 D.26.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.7.如圖,A點是半圓上一個三等分點,B點是弧AN的中點,P點是直徑MN上一動點,⊙O的半徑為1,則AP+BP的最小值為A.1 B. C. D.8.把圖中的五角星圖案,繞著它的中心點O進行旋轉,若旋轉后與自身重合,則至少旋轉()A.36° B.45° C.72° D.90°9.已知一個多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.910.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.2二、填空題(共7小題,每小題3分,滿分21分)11.若關于x的方程有增根,則m的值是▲12.如圖,在△ABC中,點D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.13.如圖,在平面直角坐標系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.14.如圖,在正方形ABCD中,等邊三角形AEF的頂點E,F(xiàn)分別在邊BC和CD上,則∠AEB=__________.15.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.16.已知二次函數(shù)與一次函數(shù)的圖象相交于點,如圖所示,則能使成立的x的取值范圍是______.17.如果,那么______.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.19.(5分)已知x1﹣1x﹣1=1.求代數(shù)式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.20.(8分)如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD=1.設點A的坐標為(4,4)則點C的坐標為;若點D的坐標為(4,n).①求反比例函數(shù)y=的表達式;②求經(jīng)過C,D兩點的直線所對應的函數(shù)解析式;在(2)的條件下,設點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.21.(10分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.22.(10分)如圖,某中學數(shù)學課外學習小組想測量教學樓的高度,組員小方在處仰望教學樓頂端處,測得,小方接著向教學樓方向前進到處,測得,已知,,.(1)求教學樓的高度;(2)求的值.23.(12分)先化簡,再求值:,其中m=2.24.(14分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發(fā)沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設運動的時間為t秒(0<t<5),解答下列問題:(1)當為t何值時,PQ∥BC;(2)設△AQP的面積為y(cm2),求y關于t的函數(shù)關系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.2、D【解析】
根據(jù)合并同類項法則,可知3a2﹣2a2=a2,故不正確;根據(jù)同底數(shù)冪相乘,可知a2?a3=a5,故不正確;根據(jù)完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正確;根據(jù)完全平方公式,可知(a+b)2=a2+2ab+b2,正確.故選D.【詳解】請在此輸入詳解!3、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.4、A【解析】
根據(jù)二次根式的性質(zhì)對A進行判斷;根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.5、B【解析】
表示16的算術平方根,為正數(shù),再根據(jù)二次根式的性質(zhì)化簡.【詳解】解:,故選B.【點睛】本題考查了算術平方根,本題難點是平方根與算術平方根的區(qū)別與聯(lián)系,一個正數(shù)算術平方根有一個,而平方根有兩個.6、C【解析】
三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.7、C【解析】作點A關于MN的對稱點A′,連接A′B,交MN于點P,則PA+PB最小,連接OA′,AA′.∵點A與A′關于MN對稱,點A是半圓上的一個三等分點,∴∠A′ON=∠AON=60°,PA=PA′,∵點B是弧AN∧的中點,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故選:C.8、C【解析】分析:五角星能被從中心發(fā)出的射線平分成相等的5部分,再由一個周角是360°即可求出最小的旋轉角度.詳解:五角星可以被中心發(fā)出的射線平分成5部分,那么最小的旋轉角度為:360°÷5=72°.故選C.點睛:本題考查了旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角.9、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點:多邊形的內(nèi)角和定理以及多邊形的外角和定理10、C【解析】
根據(jù)左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】方程兩邊都乘以最簡公分母(x-2),把分式方程化為整式方程,再根據(jù)分式方程的增根就是使最簡公分母等于1的未知數(shù)的值求出x的值,然后代入進行計算即可求出m的值:方程兩邊都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.12、1【解析】
先由DE∥BC,可證得△ADE∽△ABC,進而可根據(jù)相似三角形得到的比例線段求得BC的長.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【點睛】考查了相似三角形的性質(zhì)和判定,關鍵是求出相似后得出比例式,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.13、-1.【解析】
設正方形的對角線OA長為1m,根據(jù)正方形的性質(zhì)則可得出B、C坐標,代入二次函數(shù)y=ax1+c中,即可求出a和c,從而求積.【詳解】設正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數(shù)綜合題.14、75【解析】因為△AEF是等邊三角形,所以∠EAF=60°,AE=AF,因為四邊形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.15、25【解析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.16、x<-2或x>1【解析】試題分析:根據(jù)函數(shù)圖象可得:當時,x<-2或x>1.考點:函數(shù)圖象的性質(zhì)17、;【解析】
先對等式進行轉換,再求解.【詳解】∵∴3x=5x-5y∴2x=5y∴【點睛】本題考查的是分式,熟練掌握分式是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標為:(2,0)【解析】
(1)按題目的要求平移就可以了關于原點對稱的點的坐標變化是:橫、縱坐標都變?yōu)橄喾磾?shù),找到對應點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉為了已知直線與直線一側的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應用19、2.【解析】
將原式化簡整理,整體代入即可解題.【詳解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【點睛】本題考查了代數(shù)式的化簡求值,屬于簡單題,整體代入是解題關鍵.20、(1)C(2,2);(2)①反比例函數(shù)解析式為y=;②直線CD的解析式為y=﹣x+1;(1)m=1時,S△OEF最大,最大值為.【解析】
(1)利用中點坐標公式即可得出結論;
(2)①先確定出點A坐標,進而得出點C坐標,將點C,D坐標代入反比例函數(shù)中即可得出結論;
②由n=1,求出點C,D坐標,利用待定系數(shù)法即可得出結論;
(1)設出點E坐標,進而表示出點F坐標,即可建立面積與m的函數(shù)關系式即可得出結論.【詳解】(1)∵點C是OA的中點,A(4,4),O(0,0),∴C,∴C(2,2);故答案為(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵點C是OA的中點,∴C(2,),∵點C,D(4,n)在雙曲線上,∴,∴,∴反比例函數(shù)解析式為;②由①知,n=1,∴C(2,2),D(4,1),設直線CD的解析式為y=ax+b,∴,∴,∴直線CD的解析式為y=﹣x+1;(1)如圖,由(2)知,直線CD的解析式為y=﹣x+1,設點E(m,﹣m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y軸交雙曲線于F,∴F(m,),∴EF=﹣m+1﹣,∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,∵2<m<4,∴m=1時,S△OEF最大,最大值為【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,線段的中點坐標公式,解本題的關鍵是建立S△OEF與m的函數(shù)關系式.21、(1)證明見解析;(2)【解析】
(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后根據(jù)相似三角形的對應邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點,∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點睛】本題考查了切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理的運用;證明某一線段是圓的切線時,一般情況下是連接切點與圓心,通過證明該半徑垂直于這一線段來判定切線.22、(1)12m;(2)【解析】
(1)利用即可求解;(2)通過三角形外角的性質(zhì)得出,則,設,則,在中利用勾股定理即可求出BC,BD的長度,最后利用即可求解.【詳解】解:(1)在中,,答:教學樓的高度為;(2)設,則,故,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個體化植入體表面能調(diào)控細胞黏附的策略
- 一圖看懂框架協(xié)議書
- 信息安全基礎 課件 7.典型病毒案例
- 初中科學實驗:廢舊手機屏幕的回收與環(huán)保教學實踐教學研究課題報告
- 小學英語語音教學與語言素養(yǎng)提升研究教學研究課題報告
- 初中地理與環(huán)境教育:區(qū)塊鏈技術在旅游資源溯源與保護中的應用研究教學研究課題報告
- 肺組織再生材料的免疫響應特性-洞察及研究
- 醋酸白試驗與臨床病理結果的相關性研究-洞察及研究
- 阿奇霉素耐藥細菌內(nèi)部藥物相互作用研究-洞察及研究
- 基于云平臺的高中化學實驗教學與信息技術的整合與創(chuàng)新教學研究課題報告
- 二年級上學期期末語文試題(含答案)
- 遙感原理與應用教學輔導擴展、辨析與實踐-隨筆
- 五金品質(zhì)培訓
- 【四年級上冊】語文必背知識
- 江蘇省第二屆數(shù)據(jù)安全技術應用職業(yè)技能競賽理論考試題庫-上(單選題)
- 四川省內(nèi)江市2023-2024學年七年級上學期期末測評英語試題
- DB11∕T 594.1-2017 地下管線非開挖鋪設工程施工及驗收技術規(guī)程 第1部分:水平定向鉆施工
- 家園共育背景下幼兒良好生活習慣與能力的培養(yǎng)研究
- 四川省高等教育自學考試自考畢業(yè)生登記表001匯編
- 國家開放大學《民法學(1)》案例練習參考答案
- 美容行業(yè)盈利分析
評論
0/150
提交評論