版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省溧陽市中考數(shù)學模擬題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(
)A.,21 B.,11 C.4,21 D.,692、若關于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.23、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關系是(
)A.相交 B.相離 C.相切 D.無法判斷4、下列說法正確的是(
)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.45、已知⊙O的半徑為4,點O到直線m的距離為d,若直線m與⊙O公共點的個數(shù)為2個,則d可?。ǎ〢.5 B.4.5 C.4 D.0二、多選題(5小題,每小題3分,共計15分)1、下列命題中不正確的命題有(
)A.方程kx2-x-2=0是一元二次方程 B.x=1與方程x2=1是同解方程C.方程x2=x與方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=32、已知關于的方程,下列說法不正確的是(
)A.當時,方程無解 B.當時,方程有兩個相等的實數(shù)根C.當時,方程有兩個相等的實數(shù)根 D.當時,方程有兩個不相等的實數(shù)根3、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(
)A. B.C. D.4、下列說法不正確的是()A.相切兩圓的連心線經(jīng)過切點 B.長度相等的兩條弧是等弧C.平分弦的直徑垂直于弦 D.相等的圓心角所對的弦相等5、下面一元二次方程的解法中,不正確的是(
)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=1第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在一塊長為22m,寬為14m的矩形空地內(nèi)修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.2、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關系式是____________,自變量x的取值范圍是____________.3、如圖,是的內(nèi)接正三角形,點是圓心,點,分別在邊,上,若,則的度數(shù)是____度.4、準備在一塊長為30米,寬為24米的長方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路,(如圖所示)四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的4倍,若四條小路所占面積為80平方米,則小路的寬度為_____米.5、二次函數(shù)y=ax2+bx+c圖象上部分點的橫坐標x與縱坐標y的對應值如表格所示,那么它的圖象與x軸的另一個交點坐標是_____.四、解答題(6小題,每小題10分,共計60分)1、用配方法解方程:.2、如圖,二次函數(shù)的圖象交軸于、兩點,交軸于點,點的坐標為,頂點的坐標為.求二次函數(shù)的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標;若不存在請說明理由.3、已知拋物線.(1)該拋物線的對稱軸為;(2)若該拋物線的頂點在x軸上,求拋物線的解析式;(3)設點M(m,),N(2,)在該拋物線上,若>,求m的取值范圍.4、如圖,在平面直角坐標系中,△ABC的BC邊與x軸重合,頂點A在y軸的正半軸上,線段OB,OC()的長是關于x的方程的兩個根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個動點,過點P作PD⊥x軸,垂足為D,PD與直線AB交于點Q,設△CPQ的面積為S(),點P的橫坐標為a,求S與a的函數(shù)關系式;(3)點M的坐標為,當△MAB為直角三角形時,直接寫出m的值.5、如圖①已知拋物線的圖象與軸交于、兩點(在的左側),與的正半軸交于點,連結;二次函數(shù)的對稱軸與軸的交點.(1)拋物線的對稱軸與軸的交點坐標為,點的坐標為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點,過點作軸的平行線,與直線交于點與拋物線交于點,連結,將沿翻折,的對應點為’,在圖②中探究:是否存在點,使得’恰好落在軸上?若存在,請求出的坐標:若不存在,請說明理由.6、用適當?shù)姆椒ń夥匠蹋?1).(2).-參考答案-一、單選題1、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關鍵是配方:在二次項系數(shù)為1時,方程兩邊同時加上一次項系數(shù)一半的平方.2、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.3、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關系為相交,故選A.【考點】本題主要考查直線與圓的位置關系,熟練掌握直線與圓的位置關系是解題的關鍵.4、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質,可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應的實數(shù),反證法的概念,角平分線的性質,熟練掌握上述知識點,是解題的關鍵.5、D【解析】【分析】根據(jù)直線和圓的位置關系判斷方法,可得結論.【詳解】∵直線m與⊙O公共點的個數(shù)為2個∴直線與圓相交∴d<半徑=4故選D.【考點】本題考查了直線與圓的位置關系,掌握直線和圓的位置關系判斷方法:設⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.二、多選題1、ABCD【解析】【分析】根據(jù)方程、方程的解的有關定義以及解方程等知識點逐項判斷即可.【詳解】解:A.方程kx2?x?2=0當k≠0時才是一元二次方程,故錯誤;B.x=1與方程x2=1不是同解方程,故錯誤;C.方程x2=x與方程x=1不是同解方程,故錯誤;D.由(x+1)(x?1)=3可得x=±2,故錯誤.故選:ABCD.【考點】本題主要考查了一元二次方程的定義、解一元二次方程、同解方程等知識點,掌握解一元二次方程的方法是解答本題的關鍵.2、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數(shù)解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數(shù)根,故此選項正確,不符合題意;D當時,根據(jù)A選項,若k=0,此時方程有一個實數(shù)根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.3、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.4、BCD【解析】【分析】要找出正確命題,可運用相關基礎知識分析找出正確選項,也可以通過舉反例排除不正確選項,從而得出正確選項.(1)等弧指的是在同圓或等圓中,能夠完全重合的弧.長度相等的兩條弧,不一定能夠完全重合;(2)此弦不能是直徑;(3)相等的圓心角所對的弦相等指的是在同圓或等圓中.【詳解】解:A、根據(jù)圓的軸對稱性可知此命題正確,不符合題意;B、等弧指的是在同圓或等圓中,能夠完全重合的弧.而此命題沒有強調在同圓或等圓中,所以長度相等的兩條弧,不一定能夠完全重合,此命題錯誤,符合題意;B、此弦不能是直徑,命題錯誤,符合題意;C、相等的圓心角指的是在同圓或等圓中,此命題錯誤,符合題意;故選:BCD.【考點】本題考查的是兩圓的位置關系、圓周角定理以及垂徑定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關鍵.5、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.三、填空題1、2【解析】【分析】設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關于x的一元二次方程,解之取其符合題意的值即可得出結論.【詳解】解:設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.2、
S=-3x2+24x
≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.3、120【解析】【分析】本題可通過構造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進行轉化,構造輔助線是本題難點,全等以及垂徑定理的應用在圓綜合題目極為常見,圓心角、弧、圓周角的關系需熟練掌握.4、1.25【解析】【分析】設小路的寬度為,根據(jù)圖形所示,用表示出小路的面積,由小路面積為80平方米,求出未知數(shù).【詳解】設小路的寬度為,由題意和圖示可知,小路的面積為,解一元二次方程,由,可得.【考點】本題綜合考查一元二次方程的列法和求解,這類實際應用的題目,關鍵是要結合題意和圖示,列對方程.5、(1,0)【解析】【分析】根據(jù)表中數(shù)據(jù)得到點(-2,-3)和(0,-3)對稱點,從而得到拋物線的對稱軸為直線x=-1,再利用表中數(shù)據(jù)得到拋物線與x軸的一個交點坐標為(-3,0),然后根據(jù)拋物線的對稱性就看得到拋物線與x軸的一個交點坐標.【詳解】∵x=-2,y=-3;x=0時,y=-3,∴拋物線的對稱軸為直線x=-1,∵拋物線與x軸的一個交點坐標為(-3,0),∴拋物線與x軸的一個交點坐標為(1,0).故答案為(1,0).【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化解關于x的一元二次方程即可求得交點橫坐標.也考查了二次函數(shù)的性質.四、解答題1、x1=+3,x2=﹣3.【解析】【分析】根據(jù)配方法,兩邊配上一次項系數(shù)一半的平方即可得到,然后利用直接開平方法求解.【詳解】解:x2-2x=4,x2-2x+5=4+5,即(x-)2=9,∴x-=±3,∴x1=+3,x2=﹣3.【考點】本題主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法與步驟是解題關鍵.2、1
y=?x2+2x+3,y=?x+3;有最大值;存在滿足條件的點,其坐標為或【解析】【分析】可設拋物線解析式為頂點式,由點坐標可求得拋物線的解析式,則可求得點坐標,利用待定系數(shù)法可求得直線解析式;設出點坐標,從而可表示出的長度,利用二次函數(shù)的性質可求得其最大值;過作軸,交于點,過和于,可設出點坐標,表示出的長度,由條件可證得為等腰直角三角形,則可得到關于點坐標的方程,可求得點坐標.【詳解】解:拋物線的頂點的坐標為,可設拋物線解析式為,點在該拋物線的圖象上,,解得,拋物線解析式為,即,點在軸上,令可得,點坐標為,可設直線解析式為,把點坐標代入可得,解得,直線解析式為;設點橫坐標為,則,,,當時,有最大值;如圖,過作軸交于點,交軸于點,作于,設,則,,是等腰直角三角形,,,當中邊上的高為時,即,,,當時,,方程無實數(shù)根,當時,解得或,或,綜上可知存在滿足條件的點,其坐標為或.【考點】本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、二次函數(shù)的性質、等腰直角三角形的性質及方程思想等知識.在中主要是待定系數(shù)法的考查,注意拋物線頂點式的應用,在中用點坐標表示出的長是解題的關鍵,在中構造等腰直角三角形求得的長是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.3、(1)直線x=-1;(2)或;(3)當a>0時,m<-4或m>2;當a<0時,-4<m<2.【解析】【分析】(1)利用二次函數(shù)的對稱軸公式即可求得.(2)根據(jù)題意可知頂點坐標,再利用待定系數(shù)法即可求出二次函數(shù)解析式.(3)分類討論當a>0時和a<0時二次函數(shù)的性質,即可求出m的取值范圍.【詳解】(1)利用二次函數(shù)的對稱軸公式可知對稱軸.故答案為:.(2)∵拋物線頂點在x軸上,對稱軸為,∴頂點坐標為(-1,0).將頂點坐標代入二次函數(shù)解析式得:,整理得:,解得:.∴拋物線解析式為或.(3)∵拋物線的對稱軸為直線x=-1,∴N(2,y2)關于直線x=-1的對稱點為(-4,y2).根據(jù)二次函數(shù)的性質分類討論.(ⅰ)當a>0時,拋物線開口向上,若y1>y2,即點M在點N或的上方,則m<-4或m>2;(ⅱ)當a<0時,拋物線開口向下,若y1>y2,即點M在點N或的上方,則-4<m<2.【考點】本題為二次函數(shù)綜合題,掌握二次函數(shù)的性質是解答本題的關鍵.4、(1);(2);(3)m的值為-3或-1或2或7;【解析】【分析】(1)根據(jù)一元二次方程的解求出OB和OC的長度,然后得到點B,點C坐標和OA的長度,進而得到點A坐標,最后使用待定系數(shù)法即可求出直線AC的解析式;(2)根據(jù)點A,點B坐標使用待定系數(shù)法求出直線AB的解析式,根據(jù)直線AB解析式和直線AC解析式求出點P,Q,D坐標,進而求出PQ和CD的長度,然后根據(jù)三角形面積公式求出S,最后對a的值進行分類討論即可;(3)根據(jù)△MAB的直角頂點進行分類討論,然后根據(jù)勾股定理求解即可.(1)解:解方程得,,∵線段OB,OC()的長是關于x的方程的兩個根,∴OB=1,OC=6,∴,,∵CO=2AO,∴OA=3,∴,設直線AC的解析式為,把點,代入得,解得,∴直線AC的解析式為;(2)解:設直線AB的解析式為y=px+q,把,代入直線AB解析式得,解得,∴直線AB的解析式為,∵PD⊥x軸,垂足為D,PD與直線AB交于點Q,點P的橫坐標為a,∴,,,∴,,∴,當點P與點A或點C重合時,即當a=0或時,此時S=0,不符合題意,當時,,當時,,當時,,∴;(3)解:∵,,,∴,,,當∠MAB=90°時,,∴,解得,當∠ABM=90°時,,∴,解得m=7,當∠AMB=90°時,,∴,解得,,∴m的值為-3或-1或2或7.【考點】本題考查解一元二次方程、待定系數(shù)法求一次函數(shù)解析式、三角形面積公式、勾股定理,正確應用分類討論思想是解題關鍵.5、(1);(2);(3)【解析】【分析】(1)由拋物線的對稱軸為直線,即可求得點E的坐標;在y=ax2﹣3ax﹣4a(a<0)令y=0可得關于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點A的坐標;(2)如圖1,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,結合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點B的坐標為(4,0),點C的坐標為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達出MN的長度,結合MN=CM即可列出關于m的方程,解方程即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海外知識產(chǎn)權培訓
- 碾泥工崗前規(guī)章考核試卷含答案
- 礦山設備運行協(xié)調員道德評優(yōu)考核試卷含答案
- 海員基本安全培訓
- 丁腈橡膠裝置操作工崗前創(chuàng)新思維考核試卷含答案
- 客運船舶駕駛員崗前實操知識技能考核試卷含答案
- 高空作業(yè)機械裝配調試工測試驗證考核試卷含答案
- 酒店員工培訓資料管理與更新制度
- 酒店客房裝修改造制度
- 酒店服務質量監(jiān)控評估制度
- 如何提高語文成績的方法和建議
- 紅星美凱龍合同(標準版)
- 供水公司安全管理制度
- 購銷合同范本(蔬菜肉類專用)
- (完整)鋼筋混凝土擋土墻專項施工方案
- 魯迅的《我的失戀》課件
- 個人檢視問題清單及整改措施集合
- 支氣管封堵器課件
- 警務英語教學課件
- 旋挖鉆機進場安全培訓課件
- 功能醫(yī)學視角下的睡眠健康管理
評論
0/150
提交評論