版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西省永濟(jì)市中考數(shù)學(xué)真題分類(勾股定理)匯編專題練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、勾股定理是“人類最偉大的十個科學(xué)發(fā)現(xiàn)之一”.我國對勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時給出的,他用來證明勾股定理的圖案被稱為“趙爽弦圖”.2002年在北京召開的國際數(shù)學(xué)大會選它作為會徽.下列圖案中是“趙爽弦圖”的是(
)A. B. C. D.2、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,3、如圖,P是等邊三角形內(nèi)的一點(diǎn),且,,,以為邊在外作,連接,則以下結(jié)論中不正確的是(
)A. B. C. D.4、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點(diǎn)F,設(shè)BC=a,AC=b,AB=c,則下列關(guān)系式中成立的是(
)A.a(chǎn)2+b2=5c2 B.a(chǎn)2+b2=4c2 C.a(chǎn)2+b2=3c2 D.a(chǎn)2+b2=2c25、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形6、在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別是1,2,3,正放置的四個正方形的面積依次是S1,S2,S3,S4,則S1+S2+S3+S4=()A.4 B.5 C.6 D.77、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設(shè)折斷處離地面的高度為x尺,根據(jù)題意,可列出關(guān)于x方程為:__________.2、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.3、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.4、在△ABC中,∠C=90°,AB=10,AC=8,則BC的長為_____.5、附加題:觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請你寫出有以上規(guī)律的第⑤組勾股數(shù):________.6、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對稱點(diǎn)B'落在CD的延長線上.若AB=10,BC=8,則△ACE的面積為________.7、如圖,在矩形中,,垂足為點(diǎn).若,,則的長為______.8、如圖,已知中,,,動點(diǎn)M滿足,將線段繞點(diǎn)C順時針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.三、解答題(7小題,每小題10分,共計70分)1、如圖是一個長方形的大門,小強(qiáng)拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.2、如圖,已知半徑為5的⊙M經(jīng)過x軸上一點(diǎn)C,與y軸交于A、B兩點(diǎn),連接AM、AC,AC平分∠OAM,AO+CO=6(1)判斷⊙M與x軸的位置關(guān)系,并說明理由;(2)求AB的長;(3)連接BM并延長交圓M于點(diǎn)D,連接CD,求直線CD的解析式.3、如圖②,它可以看作是由邊長為a、b、c的兩個直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點(diǎn)在同一條直線上,(1)請從面積出發(fā)寫出一個表示a、b、c的關(guān)系的等式;(要求寫出過程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個圖形中面積關(guān)系滿足的有_______個.(3)如圖⑥,直角三角形的兩直角邊長分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_______.4、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.5、如圖,有一個水池,水面是一個邊長為16尺的正方形,在水池正中央有一根蘆葦,它高出水面2尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面,則水池里水的深度是多少尺?請你用所學(xué)知識解答這個問題.6、拖拉機(jī)行駛過程中會對周圍產(chǎn)生較大的噪聲影響.如圖,有一臺拖拉機(jī)沿公路AB由點(diǎn)A向點(diǎn)B行駛,已知點(diǎn)C為一所學(xué)校,且點(diǎn)C與直線AB上兩點(diǎn)A,B的距離分別為150m和200m,又AB=250m,拖拉機(jī)周圍130m以內(nèi)為受噪聲影響區(qū)域.(1)學(xué)校C會受噪聲影響嗎?為什么?(2)若拖拉機(jī)的行駛速度為每分鐘50米,拖拉機(jī)噪聲影響該學(xué)校持續(xù)的時間有多少分鐘?7、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計算敵方汽車的速度嗎?-參考答案-一、單選題1、B【解析】【分析】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.【詳解】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形,如圖所示:故選B.【考點(diǎn)】本題主要考查了勾股定理的證明,證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理得到勾股定理.2、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時還需驗(yàn)證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項(xiàng)符合題意;B、42+52≠62,不是勾股數(shù),故此選項(xiàng)不合題意;C、22+32≠42,不是勾股數(shù),故此選項(xiàng)不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項(xiàng)不合題意;故選:A.【考點(diǎn)】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).3、C【解析】【分析】根據(jù)△ABC是等邊三角形,得出∠ABC=60°,根據(jù)△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判斷A;根據(jù)勾股定理的逆定理即可判斷B;根據(jù)△BPQ是等邊三角形,△PCQ是直角三角形即可判斷D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判斷C.【詳解】解:∵△ABC是等邊三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正確,不符合題意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正確,不符合題意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等邊三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正確,不符合題意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正確,符合題意.故選:C.【考點(diǎn)】本題是三角形綜合題,考查了全等三角形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的逆定理,解決本題的關(guān)鍵是綜合應(yīng)用以上知識.4、A【解析】【詳解】設(shè)EF=x,DF=y(tǒng),根據(jù)三角形重心的性質(zhì)得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關(guān)系.【解答】解:設(shè)EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點(diǎn)F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點(diǎn)評】本題考查了三角形的重心:重心到頂點(diǎn)的距離與重心到對邊中點(diǎn)的距離之比為2:1.也考查了勾股定理.5、A【解析】【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果
a2=b2-c2,即b2=a2+c2,那么△ABC
是直角三角形且∠B=90°,選項(xiàng)錯誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;C、如果
a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;故選:A.【考點(diǎn)】本題考查的是直角三角形的判定和勾股定理的逆定理的應(yīng)用,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.6、A【解析】【詳解】解:由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.【考點(diǎn)】勾股定理包含幾何與數(shù)論兩個方面,幾何方面,一個直角三角形的斜邊的平方等于另外兩邊的平方和.這里,邊的平方的幾何意義就是以該邊為邊的正方形的面積.7、B【解析】【分析】根據(jù)勾股定理的逆定理、三角形內(nèi)角和定理、直角三角形定義即可.【詳解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此選項(xiàng)正確;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此選項(xiàng)不正確;C、如果∠A:∠B:∠C=1:3:2,設(shè)∠A=x,則∠B=3x,∠C=2x,則x+3x+2x=180°,解得:x=30°,則3x=90°,∴△ABC是直角三角形,此選項(xiàng)正確;D、如果a2:b2:c2=9:16:25,則a2+b2=c2,∴△ABC是直角三角形,此選項(xiàng)正確;故選:B.【考點(diǎn)】本題考查了三角形內(nèi)角和,勾股定理的逆定理,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.二、填空題1、【解析】【分析】設(shè)折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設(shè)折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.2、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點(diǎn)】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.3、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問題,能夠在實(shí)際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.4、6【解析】【分析】根據(jù)勾股定理求解即可.【詳解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC===6故答案為:6.【考點(diǎn)】本題考查勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.5、11,60,61【解析】【分析】由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設(shè)第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,計算求解即可.【詳解】解:由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,∴知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設(shè)第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,解得x=60,∴第5組數(shù)是:11、60、61故答案為:11、60、61.【考點(diǎn)】本題考查了數(shù)字類規(guī)律,勾股定理等知識.解題的關(guān)鍵在于推導(dǎo)規(guī)律.6、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點(diǎn)B的對稱點(diǎn)B'落在CD的延長線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點(diǎn)】本題考查直角三角形中的折疊問題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運(yùn)用勾股定理.7、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長,根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點(diǎn)】本題考查矩形的性質(zhì)、正弦、勾股定理等知識,是重要考點(diǎn),難度較易,掌握相關(guān)知識是解題關(guān)鍵.8、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當(dāng)點(diǎn)N落在線段AB上時,最小,求出最小值即可.【詳解】解:∵線段繞點(diǎn)C順時針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.三、解答題1、尺【解析】【分析】根據(jù)題中所給的條件可知,竹竿斜放恰好等于門的對角線長,可與門的寬和高構(gòu)成直角三角形,運(yùn)用勾股定理可求出門高,進(jìn)而解答即可.【詳解】解:設(shè)門高為x尺,則竹竿長為(x+1)尺,根據(jù)勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,∴門高7.5尺,竹竿高=7.5+1=8.5(尺).故答案為尺.【考點(diǎn)】本題考查勾股定理的運(yùn)用,正確運(yùn)用勾股定理,將數(shù)學(xué)思想運(yùn)用到實(shí)際問題中是解題關(guān)鍵.2、(1)⊙M與x軸相切,理由見解析(2)6(3)【解析】【分析】(1)連接CM,證CM⊥x即可得出結(jié)論;(2)過點(diǎn)M作MN⊥AB于N,證四邊形OCMN是矩形,得MN=OC,ON=OM=5,設(shè)AN=x,則OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂徑定理得AB=2AN即可求解;(3)連接BC,CM,過點(diǎn)D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以O(shè)B=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=,在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,從而得出點(diǎn)D坐標(biāo),然后用待定系數(shù)法求出直線CD解析式即可.(1)解:⊙M與x軸相切,理由如下:連接CM,如圖,∵M(jìn)C=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵M(jìn)C是⊙M的半徑,點(diǎn)C在x軸上,∴⊙M與x軸相切;(2)解:如圖,過點(diǎn)M作MN⊥AB于N,由(1)知,∠MCO=90°,∵M(jìn)N⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四邊形OCMN是矩形,∴MN=OC,ON=CM=5,∵OA+OC=6,設(shè)AN=x,
∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合題意,舍去),∴AN=3,∴AB=2AN=6;(3)解:如圖,連接BC,CM,過點(diǎn)D作DP⊥CM于P,由(2)知:AB=6,OA=2,OC=4,∴OB=8,C(4,0)在Rt△BOC中,∠BOC=90°,由勾股定理,得BC=,∵BD是⊙M的直徑,∴∠BCD=90°,BD=10,在Rt△BCD中,∠BCD=90°,由勾股定理,得CD=,即CD2=20,在Rt△CPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,在Rt△MPD中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,∴20-CP2=10CP-CP2,
∴CP=2,∴PD2=20-CP2=20-4=16,∴PD=4,即D點(diǎn)橫坐標(biāo)為OC+PD=4+4=8,∴D(8,-2),設(shè)直線CD解析式為y=kx+b,把C(4,0),D(8,-2)代入,得,解得:,∴直線CD的解析式為:.【考點(diǎn)】本題考查直線與圓相切的判定,勾股定理,圓周角定理的推論,垂徑定理,待定系數(shù)法求一次函數(shù)解析式,熟練掌握直線與圓相切的判定、待定系數(shù)法求一次函數(shù)解析式的方法是解題的關(guān)鍵.3、(1)(2)3(3)7.5【解析】【分析】(1)梯形的面積等于三個直角三角形的面積的和.即可得:;(2)根據(jù)勾股定理可得三個圖形中面積關(guān)系滿足的有3個;(3)根據(jù)半圓面積和勾股定理即可得結(jié)論:,進(jìn)而求解.(1)解:四邊形ABED的面積可以表示為:,也可以表示為,所以,整理得;(2)設(shè)直角三角形的三條邊按照從小到大分別為a,b,c,則,圖③,∵,∴,圖④,∵∴,圖⑤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年RFID技術(shù)發(fā)展與應(yīng)用分析
- 2025至2030葡萄糖注射液產(chǎn)業(yè)市場深度分析及發(fā)展趨勢與行業(yè)調(diào)研及市場前景預(yù)測評估報告
- 2025西歐軌道交通裝備制造業(yè)技術(shù)升級市場需求動態(tài)研究分析代表
- 2025西南化工品產(chǎn)銷渠道供需評價及環(huán)?;鸾y(tǒng)計分析報告
- 2025西亞通信設(shè)備制造業(yè)技術(shù)標(biāo)準(zhǔn)更新特點(diǎn)研究及5g通信商業(yè)化前景分析報告
- 2025藻油行業(yè)市場發(fā)展趨勢研究及行業(yè)投資深度分析
- 2025莜面食品制造業(yè)供需市場分析投資評估政策發(fā)展研究報告書
- 2025荷蘭花卉(郁金香)行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025荷蘭節(jié)能環(huán)保建筑熱水器市場發(fā)展分析及低碳生活推廣政府干預(yù)規(guī)劃
- 2025荷蘭巴基斯坦智能眼鏡行業(yè)市場需求供需布局及投資現(xiàn)狀規(guī)劃分析研究報告
- 2025年建筑工程行業(yè)智能建造技術(shù)研究報告及未來發(fā)展趨勢預(yù)測
- DB4401-T 55-2020 建設(shè)工程檔案編制規(guī)范
- 節(jié)能環(huán)保安全知識培訓(xùn)課件
- 鋼結(jié)構(gòu)工程施工質(zhì)量檢查標(biāo)準(zhǔn)
- 2025-2030中國集成電路設(shè)計行業(yè)人才缺口分析與培養(yǎng)體系建設(shè)及技術(shù)創(chuàng)新評估
- 工藝流程規(guī)范
- 城市地下綜合管網(wǎng)建設(shè)項(xiàng)目技術(shù)方案
- 【書法練習(xí)】中考語文古詩文硬筆字帖(田英章字體)
- DB65-T 4900-2025 新能源發(fā)電升壓站驗(yàn)收技術(shù)規(guī)范
- 2025廣西公需科目培訓(xùn)考試答案(90分)一區(qū)兩地一園一通道建設(shè)人工智能時代的機(jī)遇與挑戰(zhàn)
- 酸洗鈍化工安全教育培訓(xùn)手冊
評論
0/150
提交評論