版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年高考數(shù)學(xué)模擬檢測(cè)卷(新高考題型專(zhuān)項(xiàng)解析試題)考試時(shí)間:______分鐘總分:______分姓名:______一、選擇題(本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。)1.函數(shù)f(x)=|x-1|+|x+2|在區(qū)間[-3,3]上的最小值是()A.1B.2C.3D.4解析:哎呀,同學(xué)們,這道題考的是咱們函數(shù)中的絕對(duì)值函數(shù),這個(gè)可是咱們高中數(shù)學(xué)的難點(diǎn)之一呢!你們想想,絕對(duì)值函數(shù)就像一條條折線(xiàn),這里有兩個(gè)折點(diǎn),分別是x=1和x=-2。咱們要在區(qū)間[-3,3]上找最小值,那就要分情況討論啦!當(dāng)x在[-3,-2]區(qū)間時(shí),f(x)=-(x-1)-(x+2)=-2x-1;當(dāng)x在[-2,1]區(qū)間時(shí),f(x)=-(x-1)+(x+2)=3;當(dāng)x在[1,3]區(qū)間時(shí),f(x)=(x-1)+(x+2)=2x+1。你們看,最小值就在x=-2的時(shí)候,這時(shí)候f(x)=5,但是咱們要找的是整個(gè)區(qū)間上的最小值,所以還要比較這三個(gè)分段函數(shù)的最小值,發(fā)現(xiàn)當(dāng)x=1時(shí),f(x)最小,為2。所以答案是B。2.若復(fù)數(shù)z滿(mǎn)足z^2=1+i,則z的模長(zhǎng)為()A.√2B.2C.1D.√5解析:好,咱們來(lái)看第二題,這道題考的是復(fù)數(shù),復(fù)數(shù)啊,可是咱們數(shù)學(xué)里的一大亮點(diǎn)呢!你們想想,復(fù)數(shù)就像一個(gè)平面上的點(diǎn),既有實(shí)部又有虛部。這道題給出了z的平方等于1+i,那咱們?cè)趺辞髗的模長(zhǎng)呢?首先,咱們知道復(fù)數(shù)z的模長(zhǎng)等于它平方的模長(zhǎng)的平方根。所以咱們先求1+i的模長(zhǎng),1+i的模長(zhǎng)就是√(1^2+1^2)=√2。所以z的模長(zhǎng)就是√(√2)=√2/√2=1。所以答案是C。3.已知等差數(shù)列{a_n}的首項(xiàng)為1,公差為2,則前n項(xiàng)和S_n等于()A.n(n+1)B.n^2C.n(n+3)D.n^2+1解析:第三題,等差數(shù)列,這個(gè)可是咱們數(shù)列里的基礎(chǔ)呢!首項(xiàng)是1,公差是2,那咱們求前n項(xiàng)和S_n,直接用等差數(shù)列求和公式S_n=n(a_1+a_n)/2,但是咱們知道a_n=a_1+(n-1)d,所以a_n=1+(n-1)×2=2n-1。所以S_n=n(1+2n-1)/2=n(2n)/2=n^2。所以答案是B。4.圓x^2+y^2-4x+6y-3=0的圓心坐標(biāo)是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)解析:第四題,圓的方程,這個(gè)咱們也要掌握??!圓的一般方程是x^2+y^2+Dx+Ey+F=0,圓心坐標(biāo)是(-D/2,-E/2)。咱們這個(gè)方程是x^2+y^2-4x+6y-3=0,所以D=-4,E=6,圓心坐標(biāo)就是(4/2,-6/2)=(2,-3)。所以答案是A。5.函數(shù)f(x)=sin(x+π/4)在區(qū)間[0,π]上的圖像與x軸的交點(diǎn)個(gè)數(shù)為()A.1B.2C.3D.4解析:第五題,三角函數(shù),咱們要畫(huà)出圖像來(lái)輔助理解。sin(x+π/4)就是sin函數(shù)向左平移π/4,咱們知道sin函數(shù)在一個(gè)周期內(nèi)與x軸相交兩次,所以sin(x+π/4)在[0,π]上也會(huì)與x軸相交兩次。具體來(lái)說(shuō),當(dāng)x+π/4=kπ時(shí),sin(x+π/4)=0,解得x=kπ-π/4,在[0,π]上,k=1時(shí),x=3π/4;k=2時(shí),x=7π/4,但是7π/4已經(jīng)超出[0,π]的范圍了,所以只有x=3π/4這一個(gè)交點(diǎn)。所以答案是A。6.不等式|x|+|y|≤1表示的平面區(qū)域是()A.一個(gè)圓B.一個(gè)正方形C.一個(gè)矩形D.一個(gè)三角形解析:第六題,絕對(duì)值不等式,這個(gè)咱們也要掌握??!|x|+|y|≤1表示的是以原點(diǎn)為中心,邊長(zhǎng)為√2的正方形內(nèi)部及邊界。你們可以想象一下,|x|+|y|=1是一個(gè)正方形,|x|+|y|≤1就是這個(gè)正方形內(nèi)部及邊界。所以答案是B。7.已知向量a=(1,2),b=(3,-4),則向量a×b等于()A.-10B.10C.-14D.14解析:第七題,向量積,這個(gè)咱們也要掌握啊!向量a=(1,2),b=(3,-4),向量積a×b=1×(-4)-2×3=-4-6=-10。所以答案是A。8.函數(shù)f(x)=e^x-x在區(qū)間(-∞,+∞)上的單調(diào)性是()A.單調(diào)遞增B.單調(diào)遞減C.先增后減D.先減后增解析:第八題,指數(shù)函數(shù),咱們要利用導(dǎo)數(shù)來(lái)研究單調(diào)性。f(x)=e^x-x,f'(x)=e^x-1。當(dāng)x>0時(shí),e^x>1,f'(x)>0,所以f(x)在(0,+∞)上單調(diào)遞增;當(dāng)x<0時(shí),e^x<1,f'(x)<0,所以f(x)在(-∞,0)上單調(diào)遞減。所以答案是C。9.已知直線(xiàn)l1:ax+3y-6=0與直線(xiàn)l2:3x+by-9=0平行,則a的值為()A.1B.2C.3D.4解析:第九題,直線(xiàn)方程,咱們要利用平行直線(xiàn)的性質(zhì)。兩條直線(xiàn)平行,它們的斜率相等。l1的斜率是-a/3,l2的斜率是-3/b,所以-a/3=-3/b,解得a=9/b。又因?yàn)閘1過(guò)點(diǎn)(0,2),所以l1:ax+3y-6=0可以寫(xiě)成a(0)+3(2)-6=0,所以3a-6=0,解得a=2。所以答案是B。10.已知拋物線(xiàn)y^2=2px的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,點(diǎn)P在拋物線(xiàn)上,且PF=4,則點(diǎn)P到準(zhǔn)線(xiàn)l的距離為()A.2B.4C.6D.8解析:第十題,拋物線(xiàn),咱們要利用拋物線(xiàn)的定義。拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于它到準(zhǔn)線(xiàn)的距離。點(diǎn)P在拋物線(xiàn)上,PF=4,所以點(diǎn)P到準(zhǔn)線(xiàn)的距離也是4。所以答案是B。11.已知函數(shù)f(x)=log_a(x+1)在區(qū)間[0,+∞)上單調(diào)遞增,則a的取值范圍是()A.(0,1)B.(1,+∞)C.[1,+∞)D.(0,1)∪(1,+∞)解析:第十一題,對(duì)數(shù)函數(shù),咱們要利用對(duì)數(shù)函數(shù)的單調(diào)性。對(duì)數(shù)函數(shù)f(x)=log_a(x+1)在區(qū)間[0,+∞)上單調(diào)遞增,當(dāng)且僅當(dāng)a>1。所以答案是B。12.已知三角形ABC的三個(gè)內(nèi)角分別為A,B,C,且sinA=3/5,cosB=-4/5,則cosC的值為()A.1/5B.-1/5C.4/5D.-4/5解析:第十二題,三角函數(shù),咱們要利用三角函數(shù)的關(guān)系式。三角形ABC的三個(gè)內(nèi)角分別為A,B,C,所以A+B+C=π。已知sinA=3/5,cosB=-4/5,所以cosA=√(1-sin^2A)=√(1-(3/5)^2)=√(1-9/25)=√(16/25)=4/5;sinB=√(1-cos^2B)=√(1-(-4/5)^2)=√(1-16/25)=√(9/25)=3/5。所以cosC=cos(π-A-B)=-cos(A+B)=-(cosAcosB-sinAsinB)=-(4/5×(-4/5)-3/5×3/5)=-(-16/25-9/25)=-(-25/25)=1。所以答案是A。二、填空題(本大題共4小題,每小題5分,共20分。把答案填在題中橫線(xiàn)上。)13.若函數(shù)f(x)=x^3-ax+1在x=1處取得極值,則a的值為_(kāi)_____。解析:同學(xué)們,這道題考的是函數(shù)的極值,咱們要利用導(dǎo)數(shù)來(lái)研究。f(x)=x^3-ax+1,f'(x)=3x^2-a。因?yàn)閒(x)在x=1處取得極值,所以f'(1)=0,即3(1)^2-a=0,解得a=3。所以答案是3。14.已知圓C的方程為x^2+y^2-2x+4y-3=0,則圓C的半徑長(zhǎng)為_(kāi)_____。解析:好,咱們來(lái)看第十四題,圓的方程,咱們要利用圓的標(biāo)準(zhǔn)方程來(lái)求半徑。圓的標(biāo)準(zhǔn)方程是(x-h)^2+(y-k)^2=r^2,其中(h,k)是圓心坐標(biāo),r是半徑。圓C的方程為x^2+y^2-2x+4y-3=0,可以寫(xiě)成(x-1)^2+(y+2)^2=1^2+2^2+3=1+4+3=8,所以圓C的半徑長(zhǎng)為√8=2√2。所以答案是2√2。15.已知等比數(shù)列{a_n}的首項(xiàng)為2,公比為3,則前n項(xiàng)和S_n等于______。解析:第十五題,等比數(shù)列,咱們要利用等比數(shù)列求和公式。等比數(shù)列的前n項(xiàng)和公式是S_n=a_1(1-q^n)/(1-q),其中a_1是首項(xiàng),q是公比。等比數(shù)列{a_n}的首項(xiàng)為2,公比為3,所以S_n=2(1-3^n)/(1-3)=2(1-3^n)/(-2)=-(1-3^n)=3^n-1。所以答案是3^n-1。16.已知函數(shù)f(x)=sin(x+π/6)+cos(x-π/3),則f(π/4)的值為_(kāi)_____。解析:第十六題,三角函數(shù),咱們要利用三角函數(shù)的和差公式來(lái)計(jì)算。f(x)=sin(x+π/6)+cos(x-π/3),f(π/4)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/三、解答題(本大題共6小題,每小題12分,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。)13.已知函數(shù)f(x)=x^3-3x^2+2在區(qū)間[-1,4]上的最大值和最小值分別為M和m,求M和m的值。解析:同學(xué)們,這道題考的是函數(shù)的最值,咱們要利用導(dǎo)數(shù)來(lái)研究。f(x)=x^3-3x^2+2,f'(x)=3x^2-6x。首先求導(dǎo)數(shù)為零的點(diǎn),即3x^2-6x=0,解得x=0或x=2。然后比較這些點(diǎn)以及區(qū)間端點(diǎn)處的函數(shù)值。f(0)=0^3-3×0^2+2=2;f(2)=2^3-3×2^2+2=8-12+2=-2;f(-1)=(-1)^3-3×(-1)^2+2=-1-3+2=-2;f(4)=4^3-3×4^2+2=64-48+2=18。所以最大值M=18,最小值m=-2。14.已知圓C的方程為x^2+y^2-4x+6y-3=0,求圓C的圓心坐標(biāo)和半徑長(zhǎng)。解析:好,咱們來(lái)看第十四題,圓的方程,咱們要利用圓的標(biāo)準(zhǔn)方程來(lái)求圓心坐標(biāo)和半徑長(zhǎng)。圓的標(biāo)準(zhǔn)方程是(x-h)^2+(y-k)^2=r^2,其中(h,k)是圓心坐標(biāo),r是半徑。圓C的方程為x^2+y^2-4x+6y-3=0,可以寫(xiě)成(x-2)^2+(y+3)^2=2^2+3^2+3=4+9+3=16,所以圓C的圓心坐標(biāo)是(2,-3),半徑長(zhǎng)是√16=4。15.已知等比數(shù)列{a_n}的首項(xiàng)為2,公比為3,求前n項(xiàng)和S_n。解析:第十五題,等比數(shù)列,咱們要利用等比數(shù)列求和公式。等比數(shù)列的前n項(xiàng)和公式是S_n=a_1(1-q^n)/(1-q),其中a_1是首項(xiàng),q是公比。等比數(shù)列{a_n}的首項(xiàng)為2,公比為3,所以S_n=2(1-3^n)/(1-3)=2(1-3^n)/(-2)=-(1-3^n)=3^n-1。16.已知函數(shù)f(x)=sin(x+π/6)+cos(x-π/3),求f(π/4)的值。解析:第十六題,三角函數(shù),咱們要利用三角函數(shù)的和差公式來(lái)計(jì)算。f(x)=sin(x+π/6)+cos(x-π/3),f(π/4)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/1)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(2π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/1+π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4+π/6)+cos(π/4-π/3)=sin(π/4
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 充填回收工安全規(guī)程競(jìng)賽考核試卷含答案
- 硅油及乳液生產(chǎn)工安全應(yīng)急強(qiáng)化考核試卷含答案
- 油脂及脂肪酸加氫操作工安全理論評(píng)優(yōu)考核試卷含答案
- 玻璃制品機(jī)械成型工班組考核強(qiáng)化考核試卷含答案
- 中藥灸熨劑工崗前安全知識(shí)競(jìng)賽考核試卷含答案
- 薄膜電阻器制造工崗前技術(shù)規(guī)范考核試卷含答案
- 九年級(jí)開(kāi)學(xué)第一課主題班會(huì)課件
- 安全文明施工保證措施
- 交通應(yīng)急預(yù)案制定與演練制度
- 吊車(chē)保險(xiǎn)培訓(xùn)課件大全
- 化工工藝安全管理與操作手冊(cè)
- 規(guī)范外匯交易管理制度
- 2026年美麗中國(guó)全國(guó)國(guó)家版圖知識(shí)競(jìng)賽考試題庫(kù)(含答案)
- 高考英語(yǔ)讀后續(xù)寫(xiě)技巧總結(jié)
- 2025年下半年河南鄭州市住房保障和房地產(chǎn)管理局招聘22名派遣制工作人員重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 維修事故協(xié)議書(shū)
- 2025ESC+EAS血脂管理指南要點(diǎn)解讀課件
- 2025至2030外周靜脈血栓切除裝置行業(yè)調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 矛盾糾紛排查化解課件
- 2026年人力資源共享服務(wù)中心建設(shè)方案
- JJG(交通) 141-2017 瀝青路面無(wú)核密度儀
評(píng)論
0/150
提交評(píng)論