版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
初中七年級數(shù)學上期中必考點易錯點總結
第一章:有理數(shù)
知識框架:
比較大小
基本概念:
1.大于0的數(shù)叫做正數(shù)。
2.在正數(shù)前面加上負號〃-〃的數(shù)叫做負數(shù)。
3.整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。
4.人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。
5.在直線上任取一個點表示數(shù)0,這個點叫做原點。
6.一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕無
值。
7.由絕對值的定義可知:
(1)一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它
的相反數(shù);0的絕對值是0。
(2)正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。
(3)兩個負數(shù),絕對值大的反而小。
8.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的
負號,并用較大的絕對值減去較小的絕對值,互為相反
數(shù)的兩個數(shù)相加得0。
(3)一個數(shù)同0相加,仍得這個數(shù)。
9.有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不
變。
10.有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者
先把后兩個數(shù)相加,和不變。
1L有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
12.有理數(shù)乘法法則
兩數(shù)相乘,同號得正,異號得負,并把絕對值向乘。
任何數(shù)同0相乘,都得0。
13.有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
14.一般的,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,
積相等。
三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積
相等。
15.一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同
這兩個數(shù)相乘,再把積相加。
16.有理數(shù)除法法則
除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除
以任?可一個不等于o的數(shù),都得0。
17.求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做
幕。在城中,a叫做底數(shù),n叫做指數(shù)
18根據(jù)有理數(shù)的乘法法則可以得出
負數(shù)的奇次幕是負數(shù),負數(shù)的偶次幕是正數(shù)。
顯然,正數(shù)的任何次鬲都是正數(shù),0的任何次嘉都是0。
19.做有理數(shù)混合運算時,應注意以下運算順序:
先乘方,再乘除,最后加減;
同級運算,從左到右進行;
如有括號,先做括號內(nèi)的運算,按小括號、中括號、大
括號依次進行。
20把一個大于10數(shù)表示成ax10n的形式(其中a是整數(shù)數(shù)
位只有一位的數(shù),n是正整數(shù)),使用的是科學計數(shù)法。
21.接近實際數(shù)字,但是與實際數(shù)字還是有差別,這個數(shù)是一
個近似數(shù)。
22.從一個數(shù)的左邊的第一個非0數(shù)字起,到末尾數(shù)字止,所
有的數(shù)字都是這個數(shù)的有效數(shù)字。
二:整式的加減
知識框架:
基本概念:
1.都是數(shù)或字母的積的式子叫做單項式,單獨的一個數(shù)或一個
字母也是單項式。
2.單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。
3-個單項式中,所有字母的指數(shù)的和叫做這個單項式的次
數(shù)。
4.幾個單項的和叫做多項式,其中,每個單項式叫做多項式的
項,不含字母的項叫做常數(shù)項
5?多項式里次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。
6.把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的
和,且字母部分不變。
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與
原來的符號相同;
如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與
原來的符號相反。
一般地,幾個整式相加減,如果有括號就先去括號,然后再
合并同類項。
三:一元一次方程
知識框架:
fg步舞:
解去分母
方
作去括號
程
答移項同類項
合并
系數(shù)化為一
實際問題數(shù)學問題的解
的答案口(x=a)
基本概念:
1.列方程時,要先設字母表示未知數(shù),然后根據(jù)問題中的相等
關系,寫出還有未知數(shù)的等式—方程。
2.含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1,這樣的方程
叫做一元一次方程。
3.分析實際問題中的數(shù)量關系,利用其中的等量關系列出方
程,是用數(shù)學解決實際問題的一種方法。
4.等式的性質(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),
結果仍相等。
5.等式的性質(zhì)2:等式兩邊乘同一個數(shù),或除以一個不為0的
數(shù),結果仍相等。
6.把等式一邊的某項變號后移到另一邊,叫做移項。
7.應用:行程問題:s=vxt
工程問題:工作總量二工作效率X時間
盈虧問題:利潤=售價-成本不!J率=禾IJ潤一成本X100%
售價二標價x折扣數(shù)x10%
考點與易錯點
【有理數(shù)】
b5工分類關鈍點撥及對應舉例
(1)按定義分(2)技正、負性分(1)JL筑不黑于正喊,也不H十次效
?
jEWilft.(2)無建數(shù)的幾片常期&式*斷:①畬*的或
(行理數(shù)?.o_Lfl限小散或正實數(shù)子:②構造型如).010010001...(4W4*1
實3負TT理數(shù)J尢際循環(huán)小儂實以0之間多個0)蟻是一個尢限不肆M小散;⑧
/.實數(shù)
開方開不足的政:知.;?=???3!:如
〔負實數(shù)
‘止無遁數(shù)sm60。.tan2S0.
[無理數(shù)?
,無私不循環(huán)小數(shù)(3)失分點■示:開碑軍力的叁相號的IM于
.負無建數(shù).有理做,如-2.-3.它也部屬于有理數(shù)
考點二:,C數(shù)的相關概念
(1)三要素:原點'正方向、?位長度例:
2.奴觸(2)特征:實數(shù)與數(shù)軸上的點-一對應;數(shù)軸右邊的點表示數(shù)柏上-2.S表示的《到原點的蘇港也
的數(shù)總比左邊的點表示的數(shù)大
(1)瞋念:只Ti符號不同的構個儂a的相反數(shù)為-a.特別的0的絕對值足0.
(?代數(shù)麻義h互為相應政?*b=0
3.相反數(shù)
(3)幾何意義:數(shù)柏上表示互為相反數(shù)的為個點登:原點的距例:3的相反數(shù)是3.」的相反數(shù)是1
離相等
U)幾何意義:數(shù)船上未示的點到取點的整亶(1)#N-?(*0:.Mx-4*.
(2)運算性加:|a產(chǎn)Ja(aR);,+R-b(a>b)(2)對絕對值等于它本身的致是士負數(shù)
,絕對值
410(a<OXLb-a(a<b)例:5的絕對值總<;1-22;絕對值等于
(3)專負性:曲,若忸卜材=0,姍a=b=23的足旦.11卡」
(1)假念:桑鞏為1的兩個數(shù)斤為倒數(shù)a的倒數(shù)為Wa/0)例:
5.fl?(2)代儂息義:ab=la.b互為倒數(shù)-2的倒數(shù)是心;倒數(shù)等于它本身的數(shù)
有±1
考點三:科學記數(shù)法,近似數(shù)
(1)形式:a*W,其中】則<10.n為發(fā)數(shù)例:
6.科學記(2)確定n的方法:對于數(shù)位較多的大數(shù)n等于原數(shù)的等數(shù)為21000用科學記蚊法表示為2.11華;
減去],;對于小數(shù).寫成>lg1如<10.n等于原數(shù)Q左甚至19萬用科學記曲法表示為193:
做法
第一個非零數(shù)字的所有零的個數(shù)(含小數(shù)點荒面的個)00007用杼學記數(shù)法表示為7,心
(1)定義:?個^實際數(shù)值很&近的數(shù)例:
橫幽度:由四舍五人到第一位.就說這個近似曲相確至:期指確到*分位是UA;精確
7.近似政(2)314159
-ft.¥.0001是UJI
考點四:實做的大小比較
(1)數(shù)的匕較法:數(shù)幅上的兩個故右邊的儂總比左邊的數(shù)大例:
(2)性質(zhì)比較法:正數(shù)>0>負數(shù):兩個負數(shù)匕較大小,絕對值把1.20.23按從大到小的X序推
8.實數(shù)的
大的反而小列紹>為1>0>-2>?23
大小比較(3)作是比較法:a-b>0a>b;a-b=Oab;a-b<0a<b
(4)平方法:a>b>04bL
考點五:實數(shù)的運■
*方幾個相同內(nèi)致的職,負數(shù)的偶(奇)次方為正(負)例:
9.零次第
莒⑴計算:1.26?_;(.2六“,」.
見負指數(shù)耳a,P上空(a^O.p為整數(shù))3-^13.n01.
運平方根、
著(飛(叱。),則x=±4~.其中4足箕術平方根(2)64的平方根母」.算術平方市是
算術平方據(jù)
算立方艱
若e=aMx=^8.立方根是4
失分點瞽示:類傷”的算術中方程'■計算
先萊方、開方.西桑除.最后加減;同級工箕,從左
鋪誤例:相互對比堪一填:16的算
/0.混合運箕句右泣行;如書括號.先做括號內(nèi)的運算.按小括號、
術平方根S.4.的其大平方根理
中括號、大括號一次阻行H箕附.可以結合運算律.
2
使同筒單化
【整式】
「考點一:代數(shù)式及相關概念關鍵點撥及對應舉例
(1)代數(shù)式:用運算符號(加、減.乘、除、乘力、開方)把數(shù)
或表示數(shù)的為連接而成的式子,單獨的一個數(shù)或一個字用也求代數(shù)式的值花運用整體代入法
/.代數(shù)式是代數(shù)式.計算.
(2)求代數(shù)式的值:用具體數(shù)值代號代數(shù)式中的字母,計算得出例a-b=3,則3b-3a
的結果.叫做求代數(shù)式的值.
(1)單項式:表示數(shù)字與字母積的弋數(shù)式,單獨的一個數(shù)或一個例:
字母也叫單項式.其中的數(shù)字內(nèi)數(shù)叫做單項式的系數(shù).所有(1)下列式子:①?&:;②32b;
2.整式字母的指數(shù)也叫做單/式的次數(shù).③x/2;④2仁⑤7a;:⑥7x;+8x'y;
(單項(2)多項式:幾個單項式的和?多項式中的每一項叫做多項式的⑦2017.其中晨于單項式的是會
式、多項.次數(shù)最高的項的次數(shù)叫做多項式的次數(shù).⑤魅;多項式是②⑥;同類
項式)(3)整式單獨式和多動式統(tǒng)稱為終式.項是仁和⑤.
(4)同類項:所含字母相同并且相同字母的指效也相同的功叫做(2)多項式?m?ndlmnAl是六次
同類項.所有的常數(shù)項都是同類項.三項式,常數(shù)次是_J_.
考點二:整式的運算
(1)合并同類項法則:同類項的系數(shù)相加,所得的結果作為系數(shù),字失分警示:去^號時.如果括號外
3.整式的母和字母的指數(shù)不變.面是符號,一定要變號,且與括號
加減運(2)去括號法則:若括號外是“+則括號里的各項都不變號;若內(nèi)每一次相乘,不要有漏項.
算括弓外是則括號里的各項都迪.例:-2(3a-2b-1)--6a+4b+
(3)整式的加戒運算法則:先去括號,再合并同英油.2
⑴同底數(shù)寨的乘法(1)計算時,注意觀察.善于運用
其中mji它們的逆運算解決問題例:已
(2)再的柔方:(/廣仁;
4霹運算都在整數(shù)知2nvn=2則3,2"?2*=0.
法則(3)積的柔方:(曲”二心四;(2)在顰決寫的運算時,有時需
(4)卮底數(shù)器的除法:/+d=£,(GO).要先化成同底數(shù).例:
2卬4-2*-.
實用公式整理
L有理數(shù)的分類
(1)按數(shù)的“整分性”分類⑵按數(shù)的“正負性”分類
‘正整數(shù)'正整數(shù)
正有理數(shù)<
整數(shù)、零、正分數(shù)
有理數(shù)?負整數(shù)有理數(shù)<零
'正分數(shù)'負整數(shù)
分數(shù),負有理數(shù),
負分數(shù)負分數(shù)
2.絕對值
a(a>0)
絕對值的代數(shù)定義向=()(〃=())
-a(a<0)
4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海外知識產(chǎn)權培訓
- 碾泥工崗前規(guī)章考核試卷含答案
- 礦山設備運行協(xié)調(diào)員道德評優(yōu)考核試卷含答案
- 海員基本安全培訓
- 丁腈橡膠裝置操作工崗前創(chuàng)新思維考核試卷含答案
- 客運船舶駕駛員崗前實操知識技能考核試卷含答案
- 高空作業(yè)機械裝配調(diào)試工測試驗證考核試卷含答案
- 酒店員工培訓資料管理與更新制度
- 酒店客房裝修改造制度
- 酒店服務質(zhì)量監(jiān)控評估制度
- 2026陜西氫能產(chǎn)業(yè)發(fā)展有限公司所屬單位招聘(29人)備考題庫附答案
- 智慧旅游建設培訓班課件
- 2025年度康復科護理質(zhì)控工作總結與2026年規(guī)劃
- 2026年保育員初級考試試題及答案
- 社區(qū)干部法律培訓課件
- 新人培訓主播課件
- 2025年兩種人考試題庫附答案
- 鋁合金門窗安裝打膠方案
- GB/T 8642-2025熱噴涂抗拉結合強度的測定
- 山東煙草招聘筆試題庫2026
- 2026屆浙江省學軍中學高三數(shù)學第一學期期末檢測試題含解析
評論
0/150
提交評論