2026屆遼寧省沈陽市第一三四中學中考考前最后一卷數(shù)學試卷含解析_第1頁
2026屆遼寧省沈陽市第一三四中學中考考前最后一卷數(shù)學試卷含解析_第2頁
2026屆遼寧省沈陽市第一三四中學中考考前最后一卷數(shù)學試卷含解析_第3頁
2026屆遼寧省沈陽市第一三四中學中考考前最后一卷數(shù)學試卷含解析_第4頁
2026屆遼寧省沈陽市第一三四中學中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆遼寧省沈陽市第一三四中學中考考前最后一卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若二次函數(shù)的圖象經(jīng)過點(﹣1,0),則方程的解為()A., B., C., D.,2.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是()A. B.C. D.3.如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°4.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.5.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°6.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結(jié)論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=7.下列計算正確的是()A.+= B.﹣= C.×=6 D.=48.在0,-2,5,,-0.3中,負數(shù)的個數(shù)是().A.1 B.2 C.3 D.49.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:A.4個 B.3個 C.2個 D.1個10.在解方程-1=時,兩邊同時乘6,去分母后,正確的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)11.如圖,將△OAB繞O點逆時針旋轉(zhuǎn)60°得到△OCD,若OA=4,∠AOB=35°,則下列結(jié)論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=412.如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.14.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點D,點P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.15.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=______16.我國古代數(shù)學著作《九章算術(shù)》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價幾何?”意思是:現(xiàn)在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設(shè)有人,則可列方程為__________.17.如圖,在△ABC中,BA=BC=4,∠A=30°,D是AC上一動點,AC的長=_____;BD+DC的最小值是_____.18.如圖,點A是反比例函數(shù)y=﹣(x<0)圖象上的點,分別過點A向橫軸、縱軸作垂線段,與坐標軸恰好圍成一個正方形,再以正方形的一組對邊為直徑作兩個半圓,其余部分涂上陰影,則陰影部分的面積為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.當β=45°時,若△APQ是“中邊三角形”,試求的值.20.(6分)如圖,在中,,以邊為直徑作⊙交邊于點,過點作于點,、的延長線交于點.求證:是⊙的切線;若,且,求⊙的半徑與線段的長.21.(6分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據(jù)實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?22.(8分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.23.(8分)太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關(guān)注和重點發(fā)展的新興產(chǎn)業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同(即點D,F(xiàn)到地面的垂直距離相同),均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結(jié)果保留根號)24.(10分)解不等式組25.(10分)先化簡,再求值:,其中a滿足a2+2a﹣1=1.26.(12分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個交點為A,過P(1,﹣m)作PM⊥x軸于點M,交拋物線于點B,點B關(guān)于拋物線對稱軸的對稱點為C(1)若m=2,求點A和點C的坐標;(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標軸上是否存在點E,使得△PEC是以P為直角頂點的等腰直角三角形?若存在,求出點E的坐標;若不存在,請說明理由.27.(12分)計算:﹣(﹣2016)0+|﹣3|﹣4cos45°.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

∵二次函數(shù)的圖象經(jīng)過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數(shù)的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.2、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關(guān)系式即可.【詳解】解:設(shè)CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關(guān)系由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關(guān)系,重點是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.3、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.4、B【解析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對角線把矩形分成了四個面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.5、C【解析】試題分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故選C.考點:平行線的性質(zhì).6、D【解析】

由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故B正確,不符合題意;

根據(jù)相似三角形的判定即可求解,故C正確,不符合題意;

由△BAE∽△ADC,得到CD與AD的大小關(guān)系,根據(jù)正切函數(shù)可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設(shè)AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質(zhì),解直角三角形,掌握相似三角形的判定方法是解題的關(guān)鍵.7、B【解析】

根據(jù)同類二次根式才能合并可對A進行判斷;根據(jù)二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據(jù)二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.8、B【解析】

根據(jù)負數(shù)的定義判斷即可【詳解】解:根據(jù)負數(shù)的定義可知,這一組數(shù)中,負數(shù)有兩個,即-2和-0.1.故選B.9、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結(jié)論有3個.故選B.10、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故選D.點睛:本題考查了等式的性質(zhì),解題的關(guān)鍵是正確理解等式的性質(zhì),本題屬于基礎(chǔ)題型.11、D【解析】

由△OAB繞O點逆時針旋轉(zhuǎn)60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據(jù)此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據(jù)此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉(zhuǎn)60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應點到旋轉(zhuǎn)中心的距離相等.②對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等及等邊三角形的判定和性質(zhì).12、D【解析】

標注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對應邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積計算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設(shè)BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【點睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2或14【解析】

分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】①當弦AB和CD在圓心同側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當弦AB和CD在圓心異側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.14、6【解析】

根據(jù)等角對等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【點睛】此題考查等腰三角形的性質(zhì),直角三角形的性質(zhì),解題關(guān)鍵在于利用等腰三角形的“三線合一15、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點.16、【解析】

根據(jù)每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【詳解】解:由題意可設(shè)有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關(guān)鍵是明確題意,列出相應的方程.17、(Ⅰ)AC=4(Ⅱ)4,2.【解析】

(Ⅰ)如圖,過B作BE⊥AC于E,根據(jù)等腰三角形的性質(zhì)和解直角三角形即可得到結(jié)論;(Ⅱ)如圖,作BC的垂直平分線交AC于D,則BD=CD,此時BD+DC的值最小,解直角三角形即可得到結(jié)論.【詳解】解:(Ⅰ)如圖,過B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如圖,作BC的垂直平分線交AC于D,則BD=CD,此時BD+DC的值最小,∵BF=CF=2,∴BD=CD==,∴BD+DC的最小值=2,故答案為:4,2.【點睛】本題考查了等腰三角形的性質(zhì),線段垂直平分線的性質(zhì),解直角三角形,正確的作出輔助線是解題的關(guān)鍵.18、4﹣π【解析】

由題意可以假設(shè)A(-m,m),則-m2=-4,求出點A坐標即可解決問題.【詳解】由題意可以假設(shè)A(-m,m),則-m2=-4,∴m=≠±2,∴m=2,∴S陰=S正方形-S圓=4-π,故答案為4-π.【點睛】本題考查反比例函數(shù)圖象上的點的特征、正方形的性質(zhì)、圓的面積公式等知識,解題的關(guān)鍵是靈活運用所學知識解決問題三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、tanA=;綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【解析】

(1)由AC和BD是“對應邊”,可得AC=BD,設(shè)AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,可得AC是QP的垂直平分線.可求得△AEF∽△CEP,=,分兩種情況:當?shù)走匬Q與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【詳解】解:[理解]∵AC和BD是“對應邊”,∴AC=BD,設(shè)AC=2x,則CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,當點P在AB上時,△APQ是等腰直角三角形,不可能是“中邊三角形”,如圖2,當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分線,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分兩種情況:當?shù)走匬Q與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,如圖3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【點睛】本題是一道相似形綜合運用的試題,考查了相似三角形的判定及性質(zhì)的運用,勾股定理的運用,等腰直角三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,銳角三角形函數(shù)值的運用,解答時靈活運用三角函數(shù)值建立方程求解是解答的關(guān)鍵.20、(1)證明參見解析;(2)半徑長為,=.【解析】

(1)已知點D在圓上,要連半徑證垂直,連結(jié),則,所以,∵,∴.∴,∴∥.由得出,于是得出結(jié)論;(2)由得到,設(shè),則.,,,由,解得值,進而求出圓的半徑及AE長.【詳解】解:(1)已知點D在圓上,要連半徑證垂直,如圖2所示,連結(jié),∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切線;(2)在和中,∵,∴.設(shè),則.∴,.∵,∴.∴,解得=,則3x=,AE=6×-=6,∴⊙的半徑長為,=.【點睛】1.圓的切線的判定;2.銳角三角函數(shù)的應用.21、(1)一個足球需要50元,一個籃球需要80元;(2)1個.【解析】

(1)設(shè)購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,根據(jù)購買2個足球和3個籃球共需340元,4個排球和5個籃球共需600元,可得出方程組,解出即可;【詳解】(1)設(shè)購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,由題意得:2x+3y=解得:x=50y=80答:購買一個足球需要50元,購買一個籃球需要80元;(2)設(shè)該中學購買籃球m個,由題意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整數(shù),∴m最大可取1.答:這所中學最多可以購買籃球1個.【點睛】本題考查了一元一次不等式及二元一次方程組的知識,解答本題的關(guān)鍵是仔細審題,得到等量關(guān)系及不等關(guān)系,難度一般.22、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】

(1)假設(shè)能,設(shè)AB的長度為x米,則BC的長度為(31﹣1x)米,再根據(jù)矩形面積公式列方程求解即可得到答案.(1)假設(shè)能,設(shè)AB的長度為y米,則BC的長度為(36﹣1y)米,再根據(jù)矩形面積公式列方程,求得方程無解,即假設(shè)不成立.【詳解】(1)假設(shè)能,設(shè)AB的長度為x米,則BC的長度為(31﹣1x)米,根據(jù)題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設(shè)成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設(shè)能,設(shè)AB的長度為y米,則BC的長度為(36﹣1y)米,根據(jù)題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設(shè)不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.23、【解析】

過點A作,垂足為G,利用三角函數(shù)求出CG,從而求出GD,繼而求出CD.連接FD并延長與BA的延長線交于點H,利用三角函數(shù)求出CH,由圖得出EH,再利用三角函數(shù)值求出EF.【詳解】過點A作,垂足為G.則,在中,,由題意,得,∴,連接FD并延長與BA的延長線交于點H.由題意,得.在中,,∴.在中,.答:支角鋼CD的長為45cm,EF的長為.考點:三角函數(shù)的應用24、﹣1≤x<1.【解析】

分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【詳解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,則不等式組的解集為﹣1≤x<1.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.25、a2+2a,2【解析】

根據(jù)分式的減法和除法可以化簡題目中的式子,然后根據(jù)a2+2a?2=2,即可解答本題.【詳解】解:===a(a+2)=a2+2a,∵a2+2a﹣2=2,∴a2+2a=2,∴原式=2.【點睛】本題考查分式的化簡求值,解答本題的關(guān)鍵是明確分式化簡求值的方法.26、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點的坐標為(2,0)或(,0)或(0,﹣4);【解析】

方法一:(1)m=2時,函數(shù)解析式為y=,分別令y=0,x=1,即可求得點A和點B的坐標,進而可得到點C的坐標;(2)先用m表示出P,AC三點的坐標,分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點F(x,y)是直線PE上任意一點,過點F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點的等腰直角三角形求得E點坐標.方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點的等腰直角三角形,分別討論E點再x軸上,y軸上的情況求得E點坐標.【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當∠ACP=90°時,PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當∠APC=90°時,PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論