二次根式的化簡與最簡二次根式_第1頁
二次根式的化簡與最簡二次根式_第2頁
二次根式的化簡與最簡二次根式_第3頁
二次根式的化簡與最簡二次根式_第4頁
二次根式的化簡與最簡二次根式_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

二次根式的化簡與最簡二次根式第一頁,共十五頁,2022年,8月28日學習目標1:掌握積的二次根式和商的二次根式的計算公式,會進行簡單的二次根式化簡;2:理解最簡二次根式的概念,會判斷代數(shù)式是不是最簡二次根式;第二頁,共十五頁,2022年,8月28日知識探究…………1、積的算術(shù)平方根的性質(zhì)兩個非負數(shù)的積的算術(shù)平方根等于這兩個非負數(shù)的算術(shù)平方根的積2、商的算術(shù)平方根的性質(zhì)兩個非負數(shù)的商的算術(shù)平方根等于這兩個非負數(shù)的算術(shù)平方根的商第三頁,共十五頁,2022年,8月28日發(fā)現(xiàn)規(guī)律:其中字母a、b可以是什么數(shù)?有什么限制條件嗎?(a≥0,b≥0),(a≥0,

b>0).

注意公式里的條件噢?。╝≥0,

b>0).

第四頁,共十五頁,2022年,8月28日例題1:計算下列各式。第五頁,共十五頁,2022年,8月28日觀察與思考

觀察式子的,你能說出化簡后二次根式的特點嗎?滿足下列兩個條件的二次根式,叫做最簡二次根式(1)這些二次根式中的被開方數(shù)不含能夠開的出來的因式(2)被開方數(shù)不是分數(shù)(3)分母中也不含二次根式溫馨提示:化簡計算時,通常要求最終結(jié)果是整式或最簡二次根式,即要求結(jié)果的分母里不含有根號,而且各個二次根式是最簡二次根式!第六頁,共十五頁,2022年,8月28日學以致用:例題1:化簡下列各式。化簡二次根式的方法:(1)如果被開方數(shù)是整數(shù)或整式時,先分解因數(shù),然后利用積的算術(shù)平方根的性質(zhì),將式子化簡。(2)如果被開方數(shù)是分數(shù)時,先利用商的算術(shù)平方根的性質(zhì),將其變?yōu)槎胃较喑男问?然后利用分母有理化,將式子化簡。第七頁,共十五頁,2022年,8月28日1.化簡下列二次根式:練習解第八頁,共十五頁,2022年,8月28日例2:化簡下列二次根式解:一般步驟:①先把被開方式分解成平方因子和其它因子相乘的形式。②再根據(jù)積的算術(shù)平方根的性質(zhì)和把平方因子移到根號外。第九頁,共十五頁,2022年,8月28日嘗試練習

設(shè),化簡下列二次根式。解:在化簡時,一定要把被開方式中所有平方因子全部移到根號外,否則未完成化簡。第十頁,共十五頁,2022年,8月28日強化練習1、下列二次根式的化簡正確嗎?正確解法:~~~~~性質(zhì)錯用第十一頁,共十五頁,2022年,8月28日(1)(2)(3)(4)(5)(6)這些二次根式中的被開方數(shù)不含能夠開的出來的因式,被開方數(shù)不是分數(shù),分母中也不含二次根式,滿足這三點的二次根式叫最簡二次根式。======強化練習2:第十二頁,共十五頁,2022年,8月28日課堂小結(jié)1、積的算術(shù)平方根的性質(zhì)是化簡二次根式的依據(jù)之一。

2、被開方式一定要先分解成平方因子和其它因子相乘的形式。3、被開方式是多項式時一定要先因式分解,化為積的形式后才能化簡。4、化簡時,被開方式的所有平方因子一定要全部移到根號外。二次根式的化簡(a≥0,

b>0)第十三頁,共十五頁,2022年,8月28日1、指出下列各式中哪些是最簡二次根式:2、把下列各式化成最簡二次根式:3、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論