綜合解析京改版數(shù)學9年級上冊期末試卷帶答案詳解(綜合卷)_第1頁
綜合解析京改版數(shù)學9年級上冊期末試卷帶答案詳解(綜合卷)_第2頁
綜合解析京改版數(shù)學9年級上冊期末試卷帶答案詳解(綜合卷)_第3頁
綜合解析京改版數(shù)學9年級上冊期末試卷帶答案詳解(綜合卷)_第4頁
綜合解析京改版數(shù)學9年級上冊期末試卷帶答案詳解(綜合卷)_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、反比例函數(shù)圖象的兩個分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(

)A. B.C. D.2、如圖,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D從A出發(fā)沿AC方向以1cm/s向終點C勻速運動,過點D作DEAB交BC于點E,過點E作EF⊥BC交AB于點F,當四邊形ADEF為菱形時,點D運動的時間為()sA. B. C. D.3、對于拋物線,下列說法正確的是()A.拋物線開口向上B.當時,y隨x增大而減小C.函數(shù)最小值為﹣2D.頂點坐標為(1,﹣2)4、已知點在半徑為8的外,則(

)A. B. C. D.5、如圖,點M、N分別是正方形ABCD的邊BC、CD上的兩個動點,在運動過程中保持∠MAN=45°,連接EN、FM相交于點O,以下結(jié)論:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF?DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④6、如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結(jié)論中正確的結(jié)論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線2、已知四條線段a,b,c,d是成比例線段,即,下列說法正確的是(

)A.a(chǎn)d=bc B. C. D.3、如圖是拋物線的一部分,拋物線的頂點坐標是A(1,3),與x軸的一個交點是B(4,0),點P在拋物線上,且在直線AB上方,則下列結(jié)論正確的是(

)A. B.方程有兩個相等的實根C. D.點P到直線AB的最大距離4、在△ABC中,∠C=90°,下列各式一定成立的是(

)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA5、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+176、手工制作課上,小紅利用一些花布的邊角料,剪裁后裝裱手工畫.下面四個圖案是她剪裁出的空心不等邊三角形.等邊三角形.正方形和矩形花邊,其中每個圖案花邊的寬度都相同,那么每個圖案中花邊的內(nèi)外邊緣所圍成的幾何圖形相似的是(

)A. B.C. D.7、已知拋物線(,,是常數(shù),)經(jīng)過點,,當時,與其對應的函數(shù)值.下列結(jié)論正確的是(

)A. B.C. D.關(guān)于的方程有兩個不等的實數(shù)根第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、把拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為___.2、如圖,小亮為了測量校園里教學樓AB的高度,將測角儀CD豎直放置在與教學樓水平距離為18m的地面上,若測角儀的高度為I.5m,測得教學樓的頂部A處的仰角為30°,則教學樓的高度是____.3、如圖,D是△ABC的邊BC上一點,,,.如果的面積為15,那么的面積為______.4、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.5、將拋物線沿直線方向移動個單位長度,若移動后拋物線的頂點在第一象限,則移動后拋物線的解析式是__________.6、二次函數(shù)的部分圖象如圖所示,由圖象可知,方程的解為___________________;不等式的解集為___________________.7、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中點為D,將△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G,連接DG,在旋轉(zhuǎn)過程中,DG的最大值是________四、解答題(6小題,每小題10分,共計60分)1、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?2、在平面直角坐標系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側(cè)).(1)求拋物線的頂點P的坐標(用含a的代數(shù)式表示);(2)橫、縱坐標都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當時,請直接寫出“W區(qū)域”內(nèi)的整點個數(shù);②當“W區(qū)域”內(nèi)恰有2個整點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.3、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經(jīng)過點(3,1);4、如圖,在的正三角形的網(wǎng)格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.5、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.6、新冠肺炎疫情期間,我國各地采取了多種方式進行預防.其中,某地運用無人機規(guī)勸居民回家.如圖,無人機于空中A處測得某建筑頂部B處的仰角為,測得該建筑底部C處的俯角為.若無人機的飛行高度為,求該建筑的高度(結(jié)果取整數(shù)),參考數(shù)據(jù):,,.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意可得,進而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負半軸,且經(jīng)過第一、三、四象限.觀察選項只有D選項符合.故選D【考點】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關(guān)鍵.2、D【解析】【分析】由勾股定理可求AB的長,由銳角三角函數(shù)可得,即可求解.【詳解】解:設經(jīng)過t秒后,四邊形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故選:D.【考點】本題考查了菱形的性質(zhì),勾股定理,銳角三角函數(shù)等知識,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.3、B【解析】【分析】根據(jù)二次函數(shù)圖象的性質(zhì)對各項進行分析判斷即可.【詳解】解:拋物線解析式可知,A、由于,故拋物線開口方向向下,選項不符合題意;B、拋物線對稱軸為,結(jié)合其開口方向向下,可知當時,y隨x增大而減小,選項說法正確,符合題意;C、由于拋物線開口方向向下,故函數(shù)有最大值,且最大值為-2,選項不符合題意;D、拋物線頂點坐標為(-1,-2),選項不符合題意.故選:B.【考點】本題主要考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是熟練運用拋物線的開口方向、對稱軸、頂點坐標以及二次函數(shù)圖象的增減性解題.4、A【解析】【分析】根據(jù)點P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點與圓的位置關(guān)系的方法.5、A【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可證△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正確;由“SAS”可證△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正確;通過證明△DAE∽△BFA,可得,可證BC2=DE?BF,故③正確;通過證明點A,點B,點M,點F四點共圓,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可證MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④錯誤,即可求解.【詳解】解:將△ABM繞點A逆時針旋轉(zhuǎn)90°,得到△ADM′,將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴點M'在直線CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正確;∵將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正確;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴,又∵AB=AD=BC,∴BC2=DE?BF,故③正確;∵∠FBM=∠FAM=45°,∴點A,點B,點M,點F四點共圓,∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,同理可求∠AEN=90°,∠DAN=∠DEN,∴∠EOM=45°=∠EMO,∴EO=EM,∴MO=EO,∵∠BAM≠∠DAN,∴∠BFM≠∠DEN,∴EO≠FO,∴OM≠FO,故④錯誤,故選:A.【考點】本題考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識,添加恰當輔助線構(gòu)造全等三角形是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應用.二、多選題1、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質(zhì),圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關(guān)系,切線的概念的理解,等邊三角形的判定與性質(zhì),靈活運用以上知識解題是解題的關(guān)鍵.2、ABD【解析】【分析】根據(jù)比例的性質(zhì)將原式變形,分別進行判斷即可,進而得出答案.【詳解】解:∵四條線段a,b,c,d是成比例線段,即,∴A.利用內(nèi)項之積等于外項之積,ad=bc,故選項正確,B.利用內(nèi)項之積等于外項之積,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故選項正確,C.∵,∴,故選項錯誤,D.∵∴,故選項正確,故選:ABD.【考點】此題主要考查了比例的性質(zhì),將比例式靈活正確變形得出是解題關(guān)鍵.3、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、坐標系內(nèi)直線的平移、利用配方法求二次三項式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項錯誤;由圖象可知,直線與拋物線只有一個交點,則方程有兩個相等的實根,故B選項正確;當時,拋物線由最大值,則,即,故C選項正確;設直線AB的表達式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個交點時至,要求點P到直線AB的最大距離,即點P為直線與拋物線的交點,過點作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設直線的表達式為,當與拋物線有一個交點時,即,整理得,由于只有一個交點,則,解得,即直線AB向上平移了:,則,則,點P到直線AB的最大距離,故D選項正確,故選BCD.【考點】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、平面直角坐標系內(nèi)直線的平移,解題的關(guān)鍵學會利用函數(shù)圖象解決問題,靈活運用相關(guān)知識解決問題,本題難點在于要求拋物線上的點到直線的最大距離即求直線平移至與拋物線有一個交點時交點到直線的距離.4、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對各選項分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項A錯誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.5、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.6、ABC【解析】【分析】根據(jù)相似圖形的定義,結(jié)合圖形,對選項一一分析,排除不符合要求答案.【詳解】解:A、形狀相同,符合相似形的定義,對應角相等,所以三角形相似,故該選項符合題意;B、形狀相同,符合相似形的定義,故該選項符合題意;C、形狀相同,符合相似形的定義,故該選項符合題意;D、兩個矩形,雖然四個角對應相等,但對應邊不成比例,故該選項不符合題意;故選:ABC.【考點】本題考查的是相似形的概念,聯(lián)系圖形,即形狀相同,大小不一定相同的圖形叫做相似形.全等形是相似形的一個特例.7、BCD【解析】【分析】根據(jù)函數(shù)與點的關(guān)系,一元二次方程根的判別式,不等式的性質(zhì),逐一計算判斷即可.【詳解】∵拋物線(是常數(shù),)經(jīng)過點(-1,-1),,當時,與其對應的函數(shù)值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A錯誤;∵b=a+2,a>2,c=1,,故B正確;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正確;∵,∴△==>0,∴有兩個不等的實數(shù)根,故D正確.故選:BCD.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,不等式的基本性質(zhì),熟練掌握二次函數(shù)的性質(zhì),靈活使用根的判別式,準確掌握不等式的基本性質(zhì)是解題的關(guān)鍵.三、填空題1、【解析】【分析】直接根據(jù)“上加下減,左加右減”進行計算即可.【詳解】解:拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為:,即:故答案為:.【考點】本題主要考查函數(shù)圖像的平移,熟記函數(shù)圖像的平移方式“上加下減,左加右減”是解題的關(guān)鍵.2、19.5m.【解析】【分析】作DE⊥AB于E,根據(jù)tan∠ADE=求出AE,故可求解.【詳解】解:作DE⊥AB于E,在Rt△ADE中,tan∠ADE=,∴AE=DE?tan∠ADE=18×=18,∴AB=AE+EB=18+1.5=19.5(m),故答案為:19.5m.【考點】此題主要考查解直角三角形的應用-仰角俯角問題,解題的關(guān)鍵是熟知正切的定義.3、5【解析】【分析】先證明△ACD∽△BCA,再根據(jù)相似三角形的性質(zhì)得到:△ACD的面積:△ABC的面積為1:4,再結(jié)合△ABD的面積為15,然后求出△ACD的面積即可.【詳解】∵,,∴,∵,,∴,∴的面積,故答案是:5.【考點】本題主要考查了相似三角形的判定和性質(zhì)、掌握相似三角形的面積比等于相似比的平方是解答本題的關(guān)鍵.4、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點性質(zhì)進行角度求解,熟練掌握,即可解題.5、【解析】【分析】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),再求出平移后的頂點坐標,最后求出平移后的函數(shù)關(guān)系式.【詳解】設拋物線沿直線方向移動個單位長度后頂點坐標為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點坐標為(1,3),∴移動后拋物線的解析式是.故答案為:.【考點】本題考查二次函數(shù)的圖象變換及一次函數(shù)的圖像,解題的關(guān)鍵是正確理解圖象變換的條件,本題屬于基礎題型.6、

或【解析】【分析】根據(jù)拋物線的對稱軸和拋物線與x軸一個交點求出另一個交點,再通過二次函數(shù)與方程的兩根,二次函數(shù)與不等式解集的關(guān)系求得答案.【詳解】∵拋物線的對稱軸為,拋物線與x軸一個交點為(5,0)∴拋物線與x軸另一個交點為(-1,0)∴方程的解為:,由圖像可知,不等式的解集為:或.故答案為:,;或.【考點】本題考查了二次函數(shù)的圖像性質(zhì),掌握二次函數(shù)與方程的兩根,二次函數(shù)與不等式的解集關(guān)系,是解決問題的關(guān)鍵.7、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,連接CG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出CG,然后根據(jù)三角形的任意兩邊之和大于第三邊判斷出D、C、G三點共線時DG有最大值,再代入數(shù)據(jù)進行計算即可得解.【詳解】連接CG,∵BC的中點為D∵△ABC繞點C順時針旋轉(zhuǎn)任意一個角度得到△FEC,EF的中點為G由三角形的三邊關(guān)系得∴D、C、G三點共線時,DG有最大值故答案為:6.【考點】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、解直角三角形、三角形的三邊關(guān)系是解題的關(guān)鍵.四、解答題1、△AFD∽△EFB,△ABC∽△ADE;理由見解析.【解析】【分析】根據(jù)兩個三角形的兩組角對應相等,那么這兩個三角形互為相似三角形證明即可.【詳解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考點】本題考查相似三角形的判定定理,熟記判定定理,本題用到了兩組角對應相等的兩個三角形互為相似三角形.2、(1)頂點P的坐標為;(2)①6個;②,.【解析】【分析】(1)由拋物線解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),畫出函數(shù)圖象,觀察圖象可得;②分兩種情況求:當a>0時,拋物線定點經(jīng)過(2,-2)時,a=1,拋物線定點經(jīng)過(2,-1)時,a=,則<a≤1;當a<0時,拋物線定點經(jīng)過(2,2)時,a=-1,拋物線定點經(jīng)過(2,1)時,a=-,則-1≤a<-.【詳解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴頂點為(2,-2a);(2)如圖,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6個整數(shù)點;②當a>0時,拋物線定點經(jīng)過(2,-2)時,a=1,拋物線定點經(jīng)過(2,-1)時,,;∴.當時,拋物線頂點經(jīng)過點(2,2)時,;拋物線頂點經(jīng)過點(2,1)時,;∴.∴綜上所述:,.【考點】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)的圖象及性質(zhì)是解題的關(guān)鍵.3、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標,則可設頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論