強化訓練滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第1頁
強化訓練滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第2頁
強化訓練滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第3頁
強化訓練滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第4頁
強化訓練滬科版9年級下冊期末測試卷附完整答案詳解(典優(yōu))_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,的半徑為6,將劣弧沿弦翻折,恰好經過圓心O,點C為優(yōu)弧上的一個動點,則面積的最大值是()A. B. C. D.2、下列事件中,是必然事件的是()A.實心鐵球投入水中會沉入水底B.車輛隨機到達一個路口,遇到紅燈C.打開電視,正在播放《大國工匠》D.拋擲一枚硬幣,正面向上3、如圖,在中,,,將繞點C逆時針旋轉90°得到,則的度數為()A.105° B.120° C.135° D.150°4、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.65、下列說法中正確的是()A.“打開電視,正在播放《新聞聯(lián)播》”是必然事件B.某次抽獎活動中獎的概率為,說明每買100張獎券,一定有一次中獎C.想了解某市城鎮(zhèn)居民人均年收入水平,宜采用抽樣調查D.我區(qū)未來三天內肯定下雪6、如圖,在中,,,,將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是()A. B. C. D.7、如圖,圓形螺帽的內接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm8、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,⊙O的半徑為2,△ABC是⊙O的內接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.2、林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數據:移植的棵數n10001500250040008000150002000030000成活的棵數m8651356222035007056131701758026430成活的頻率0.8650.9040.8880.8750.8820.8780.8790.881估計該種幼樹在此條件下移植成活的概率為_______.3、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.4、如圖,、分別與相切于A、B兩點,若,則的度數為________.5、如圖,把分成相等的六段弧,依次連接各分點得到正六邊形ABCDEF,如果的周長為,那么該正六邊形的邊長是______.6、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.7、點P為邊長為2的正方形ABCD內一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉60°得到線段MQ,連接AQ、PQ,則的最小值為______.三、解答題(7小題,每小題0分,共計0分)1、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.2、對于平面直角坐標系xOy中的圖形M和點P給出如下定義:Q為圖形M上任意一點,若P,Q兩點間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點P為圖形M的“二分點”.已知點N(3,0),A(1,0),,.(1)①在點A,B,C中,線段ON的“二分點”是______;②點D(a,0),若點C為線段OD的“二分點”,求a的取值范圍;(2)以點O為圓心,r為半徑畫圓,若線段AN上存在的“二分點”,直接寫出r的取值范圍.3、小宇和小偉玩“石頭、剪刀、布”的游戲.這個游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢相同不分勝負.如果二人同時隨機出手(分別出三種手勢中的一種手勢)一次,那么小宇獲勝的概率是多少?4、在平面直角坐標系中,的三個頂點坐標分別為.(每個方格的邊長均為1個單位長度)(1)畫出關于原點對稱的圖形,并寫出點的坐標;(2)畫出繞點O逆時針旋轉后的圖形,并寫出點的坐標;(3)寫出經過怎樣的旋轉可直接得到.(請將20題(1)(2)小問的圖都作在所給圖中)5、如圖,以四邊形的對角線為直徑作圓,圓心為,點、在上,過點作的延長線于點,已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.6、如圖1,點O為直線AB上一點,將兩個含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點O按逆時針方向旋轉至圖2的位置,使得邊OP在的內部且平分,此時三角板OPQ旋轉的角度為______度;(2)三角板OPQ在繞點O按逆時針方向旋轉時,若OP在的內部.試探究與之間滿足什么等量關系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點O以每秒2°的速度按順時針方向旋轉,同時將三角板OPQ繞點O以每秒3°的速度按逆時針方向旋轉,將射線OB繞點O以每秒5°的速度沿逆時針方向旋轉,旋轉后的射線OB記為OE,射線OC平分,射線OD平分,當射線OC、OD重合時,射線OE改為繞點O以原速按順時針方向旋轉,在OC與OD第二次相遇前,當時,直接寫出旋轉時間t的值.7、如圖1,在中,,,點D為AB邊上一點.(1)若,則______;(2)如圖2,將線段CD繞著點C逆時針旋轉90°得到線段CE,連接AE,求證:;(3)如圖3,過點A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.-參考答案-一、單選題1、C【分析】如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結論.【詳解】解:如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點睛】本題考查垂徑定理、三角函數、三角形的面積、垂線段最短等知識,解題的關鍵是求出CT的最大值,屬于中考??碱}型.2、A【分析】根據必然事件、不可能事件、隨機事件的概念進行判斷即可.【詳解】解:A、實心鐵球投入水中會沉入水底,是必然事件,該選項符合題意;B、車輛隨機到達一個路口,遇到紅燈,是隨機事件,該選項不合題意;C、打開電視,正在播放《大國工匠》,是隨機事件,該選項不合題意;D、拋擲一枚硬幣,正面向上,是隨機事件,該選項不合題意;故選:A.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、B【分析】由題意易得,然后根據三角形外角的性質可求解.【詳解】解:由旋轉的性質可得:,∴;故選B.【點睛】本題主要考查旋轉的性質及三角形外角的性質,熟練掌握旋轉的性質及三角形外角的性質是解題的關鍵.4、B【分析】由切線的性質可推出,.再根據直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質,三角形全等的判定和性質.熟練掌握切線的性質是解答本題的關鍵.5、C【分析】根據必然事件,隨機事件的定義,判斷全面調查與抽樣調查,逐項分析判斷即可,根據確定事件和隨機事件的定義來區(qū)分判斷即可,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.“打開電視,正在播放《新聞聯(lián)播》”是隨機事件,故該選項不正確,不符合題意;B.某次抽獎活動中獎的概率為,說明每買100張獎券,不一定有一次中獎,故該選項不正確,不符合題意;C.想了解某市城鎮(zhèn)居民人均年收入水平,宜采用抽樣調查,故該選項正確,符合題意;D.我區(qū)未來三天內不一定下雪,故該選項不正確,不符合題意;故選C【點睛】本題考查了必然事件,隨機事件,判斷全面調查與抽樣調查,掌握以上知識是解題的關鍵.6、C【分析】過點A作AC⊥x軸于點C,設,則,根據勾股定理,可得,從而得到,進而得到∴,可得到點,再根據旋轉的性質,即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是,∴將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉,解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考??碱}型.7、D【分析】根據圓內接正六邊形的性質可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內接正六邊形的性質可得△AOB是正三角形,過作于設半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉化為直角三角形的問題是解決問題的關鍵.8、A【分析】根據等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關鍵.二、填空題1、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.2、0.880【分析】大量重復實驗的情況下,當頻率呈現(xiàn)一定的穩(wěn)定性時,可以用這一穩(wěn)定值估計事件發(fā)生的概率,據此可解.【詳解】解:大量重復實驗的情況下,當頻率呈現(xiàn)一定的穩(wěn)定性時,可以用這一穩(wěn)定值估計事件發(fā)生的概率,從上表可以看出,頻率成活的頻率,即穩(wěn)定于0.880左右,∴估計這種幼樹移植成活率的概率約為0.88.故答案為:0.880.【點睛】此題主要考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.3、【分析】連接OC交AB于點D,再連接OA.根據軸對稱的性質確定,OD=CD;再根據垂徑定理確定AD=BD;再根據勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質,垂徑定理,勾股定理,綜合應用這些知識點是解題關鍵.4、【分析】根據已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點,,,,,.故答案為:.【點睛】本題考查的知識點是切線的性質以及圓周角定理,掌握以上知識點是解此題的關鍵.5、6【分析】如圖,連接OA、OB、OC、OD、OE、OF,證明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,再求出圓的半徑即可.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF.∵正六邊形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,∵的周長為,∴的半徑為,正六邊形的邊長是6;【點睛】本題考查正多邊形與圓的關系、等邊三角形的判定和性質等知識,明確正六邊形的邊長和半徑相等是解題的關鍵.6、65【分析】連接OA,OC,OB,根據四邊形內角和可得,依據切線的性質及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數量關系可得,,根據等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質,角平分線的判定和性質,四邊形內角和等,理解題意,作出相應輔助線,綜合運用這些知識點是解題關鍵.7、【分析】如圖,取的中點,連接,,,證明,進而證明在上運動,且垂直平分,根據,求得最值,根據正方形的性質和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質等邊三角形的性質,旋轉的性質,全等三角形的性質與判定,勾股定理,垂直平分線的性質與判定,根據以上知識轉化線段是解題的關鍵.三、解答題1、(1)見解析;(2)【分析】(1)連接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,從而可證得△OBC≌△ODC,即可證得CD是⊙O的切線;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,從而可得,則可求得OC的長.【詳解】(1)連接OD,∵,∴.又∵,∴,∴.在與中,∴,∴.又∵,∴,∴是的切線.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【點睛】本題是圓的綜合,它考查了切線的判定,三角形全等的判定與性質,相似三角形的判定與性質等知識;證明圓的切線時,往往作半徑.2、(1)①B和C;②或;(2)或【分析】(1)①分別找出點A,B,C到線段ON的最小值和最大值,是否滿足“二分點”定義即可;②對a的取值分情況討論:、、和,根據“二分點”的定義可求解;(2)設線段AN上存在的“二分點”為,對的取值分情況討論、,、,和,根據“二分點”的定義可求解.【詳解】(1)①∵點A在ON上,故最小值為0,不符合題意,點B到ON的最小值為,最大值為,∴點B是線段ON的“二分點”,點C到ON的最小值為1,最大值為,∴點C是線段ON的“二分點”,故答案為:B和C;②若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:;若,如圖所示:點C到OD的最小值為1,最大值為,滿足題意;若時,如圖所示:點C到OD的最小值為1,最大值為,∵點C為線段OD的“二分點”,∴,解得:(舍);若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:或(舍),綜上所得:a的取值范圍為或;(2)如圖所示,設線段AN上存在的“二分點”為,當時,最小值為:,最大值為:,∴,即,∵,∴∴;當,時,最小值為:,最大值為:,∴∴,即,∵,∴,∵,∴不存在;當,時,最小值為:,最大值為:,∴,即,∴,∵,∴不存在;當時,最小值為:,最大值為:,∴,即,∴,∵,∴,綜上所述,r的取值范圍為或.【點睛】本題考查坐標上的兩點距離,解一元二次方程解不等式以及點到圓的距離求最值,根據題目所給條件,掌握“二分點”的定義是解題的關鍵.3、小宇獲勝的概率是,見解析.【分析】根據題意畫樹狀圖表示出所有等可能的情況,繼而解題.【詳解】解:畫樹狀圖如下,所有機會均等的情況共9種,小宇獲勝的概率為:,答:小宇獲勝的概率是.【點睛】本題考查用列表法或畫樹狀圖表示概率,是基礎考點,掌握相關知識是解題關鍵.4、(1)見解析,;(2)見解析,(3)繞點O順時針時針旋轉【分析】(1)根據題意得:關于原點的對稱點為,再順次連接,即可求解;(2)根據題意得:繞點O逆時針旋轉后的對稱點為,再順次連接;(3)根據題意得:繞點O順時針時針旋轉后可直接得到,即可求解.(1)解:根據題意得:關于原點的對應點為,畫出圖形如下圖所示:(2)解:根據題意得:繞點O逆時針旋轉后的對應點為,畫出圖形如下圖所示:(3)解:根據題意得:繞點O順時針時針旋轉后可直接得到.【點睛】本題主要考查了圖形的變換——畫關于原點對稱,繞原點旋轉后圖形,得到圖形關于原點對稱,繞原點旋轉后對應點的坐標是解題的關鍵.5、(1)證明見解析(2)【分析】(1)連接OA,根據已知條件證明OA⊥AE即可解決問題;(2)取CD中點F,連接OF,根據垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切線;(2)解:如圖,取CD中點F,連接OF,∴OF⊥CD于點F.∴四邊形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的長是.【點睛】本題考查了切線的判定與性質,垂徑定理,圓周角定理,勾股定理,解決本題的關鍵是掌握切線的判定與性質.6、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據OP平分得到∠PON,然后求出∠BOP即可;(2)先根據題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時間,再設在OC與OD第二次相遇前,當時,需要旋轉時間為t,再分OE在OC的左側和OE在OC的右側兩種情況解答即可.(1)解:∵OP平分∠MON∴∠PON=∠MON=45°∴三角板OPQ旋轉的角:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論