版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省常熟市中考數(shù)學(xué)考試彩蛋押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、2019年女排世界杯于9月在日本舉行,中國女排以十一連勝的驕人成績衛(wèi)冕冠軍,充分展現(xiàn)了團隊協(xié)作、頑強拼搏的女排精神.如圖是某次比賽中墊球時的動作,若將墊球后排球的運動路線近似的看作拋物線,在同一豎直平面內(nèi)建立如圖所示的直角坐標(biāo)系,已知運動員墊球時(圖中點A)離球網(wǎng)的水平距離為5米,排球與地面的垂直距離為0.5米,排球在球網(wǎng)上端0.26米處(圖中點B)越過球網(wǎng)(女子排球賽中球網(wǎng)上端距地面的高度為2.24米),落地時(圖中點)距球網(wǎng)的水平距離為2.5米,則排球運動路線的函數(shù)表達式為(
)A. B.C. D.2、關(guān)于函數(shù),下列說法:①函數(shù)的最小值為1;②函數(shù)圖象的對稱軸為直線x=3;③當(dāng)x≥0時,y隨x的增大而增大;④當(dāng)x≤0時,y隨x的增大而減小,其中正確的有()個.A.1 B.2 C.3 D.43、當(dāng)0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,44、二次函數(shù)的圖像如圖所示,現(xiàn)有以下結(jié)論:(1):(2);(3),(4);(5);其中正確的結(jié)論有(
)A.2個 B.3個 C.4個 D.5個.5、已知關(guān)于x的一元二次方程x2﹣3x+1=0有兩個不相等的實數(shù)根x1,x2,則x12+x22的值是()A.﹣7 B.7 C.2 D.﹣2二、多選題(5小題,每小題3分,共計15分)1、對于二次函數(shù),下列說法不正確的是(
)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大2、下列圖案中,是中心對稱圖形的是(
)A. B. C. D.3、若關(guān)于的一元二次方程的兩個實數(shù)根分別是,且滿足,則的值不可能為(
)A.或 B. C. D.不存在4、兩個關(guān)于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-25、下列各數(shù)不是方程解的是(
)A.6 B.2 C.4 D.0第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、寫出一個滿足“當(dāng)時,隨增大而減小”的二次函數(shù)解析式______.2、已知關(guān)于的方程的一個根是,則____.3、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.4、若代數(shù)式有意義,則x的取值范圍是_____.5、對任意實數(shù)a,b,定義一種運算:,若,則x的值為_________.四、解答題(6小題,每小題10分,共計60分)1、某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件,如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設(shè)每件商品的售價x元(x為整數(shù)),每個月的銷售量為y件.(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;(2)設(shè)每月的銷售利潤為W,請直接寫出W與x的函數(shù)關(guān)系式.2、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).3、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應(yīng)的函數(shù)解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時,求出所有滿足條件的點Q的坐標(biāo).4、已知關(guān)于x的一元二次方程.(1)求證:不論m取何值,方程總有兩個不相等的實數(shù)根;(2)若方程有兩個實數(shù)根為,,且,求m的值.5、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個新圖象有且只有一個公共點時,d=;(2)當(dāng)直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當(dāng)直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當(dāng)直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.6、小敏與小霞兩位同學(xué)解方程的過程如下框:小敏:兩邊同除以,得,則.小霞:移項,得,提取公因式,得.則或,解得,.你認為他們的解法是否正確?若正確請在框內(nèi)打“√”;若錯誤請在框內(nèi)打“×”,并寫出你的解答過程.-參考答案-一、單選題1、A【解析】【分析】由題意可知點A坐標(biāo)為(-5,0.5),點B坐標(biāo)為(0,2.5),點C坐標(biāo)為(2.5,0),設(shè)排球運動路線的函數(shù)表達式為:y=ax2+bx+c,將點A、B、C的坐標(biāo)代入得關(guān)于a、b、c的三元一次方程組,解得a、b、c的值,則函數(shù)解析式可得,從而問題得解.【詳解】解:由題意可知點A坐標(biāo)為(-5,0.5),點B坐標(biāo)為(0,2.5),點C坐標(biāo)為(2.5,0)設(shè)排球運動路線的函數(shù)解析式為:y=ax2+bx+c,∵排球經(jīng)過A、B、C三點,,解得:,∴排球運動路線的函數(shù)解析式為,故選:A.【考點】本題考查了根據(jù)實際問題列二次函數(shù)關(guān)系式并求得關(guān)系式,數(shù)形結(jié)合并明確二次函數(shù)的一般式是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)所給函數(shù)的頂點式得出函數(shù)圖象的性質(zhì)從而判斷選項的正確性.【詳解】解:∵,∴該函數(shù)圖象開口向上,有最小值1,故①正確;函數(shù)圖象的對稱軸為直線,故②錯誤;當(dāng)x≥0時,y隨x的增大而增大,故③正確;當(dāng)x≤﹣3時,y隨x的增大而減小,當(dāng)﹣3≤x≤0時,y隨x的增大而增大,故④錯誤.故選:B.【考點】本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是能夠根據(jù)函數(shù)解析式分析出函數(shù)圖象的性質(zhì).3、A【解析】【分析】利用配方法把原方程化為頂點式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當(dāng)x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點式是解答本題的關(guān)鍵.4、C【解析】【分析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】解:(1)∵函數(shù)開口向下,∴a<0,∵對稱軸在y軸的右邊,∴,∴b>0,故命題正確;(2)∵a<0,b>0,c>0,∴abc<0,故命題正確;(3)∵當(dāng)x=-1時,y<0,∴a-b+c<0,故命題錯誤;(4)∵當(dāng)x=1時,y>0,∴a+b+c>0,故命題正確;(5)∵拋物線與x軸于兩個交點,∴b2-4ac>0,故命題正確;故選C.【考點】本題考查了二次函數(shù)圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.5、B【解析】【分析】根據(jù)一元二次方程的根與系數(shù)的關(guān)系可得x1+x2=3,x1x2=1,再把代數(shù)式x12+x22化為,再整體代入求值即可.【詳解】解:根據(jù)根與系數(shù)的關(guān)系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故選:B.【考點】本題考查的是一元二次方程的根與系數(shù)的關(guān)系,熟練的利用根與系數(shù)的關(guān)系求解代數(shù)式的值是解本題的關(guān)鍵.二、多選題1、ACD【解析】【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當(dāng)x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.2、ABD【解析】【分析】在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,這個圖形就是中心對稱圖形,根據(jù)定義判斷即可.【詳解】、是中心對稱圖形,選項正確;B、是中心對稱圖形,選項正確;C、不是中心對稱圖形,選項錯誤;D、是中心對稱圖形,選項正確.故選:ABD【考點】本題考查中心對稱圖形的定義,牢記定義是解題關(guān)鍵.3、ABD【解析】【分析】利用可得,從而得到,解出k結(jié)合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實數(shù)根分別是,,∴,∵,∴,即,解得:,當(dāng)時,,∴此時方程無實數(shù)根,不合題意,舍去,當(dāng)時,,∴此時方程有兩個不相等實數(shù)根,∴的值為.故選:ABD.【考點】本題主要考查了一元二次方程根與系數(shù)的關(guān)系,熟練掌握若一元二次方程的兩個實數(shù)根分別是,,則是解題的關(guān)鍵.4、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當(dāng)x=時,,∴是方程的根.故選:A,D.【考點】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關(guān)鍵.5、ACD【解析】【分析】分別把四個選項中的數(shù)代入方程,看方程兩邊是否相等即可求解.【詳解】解:A、將6代入得:,故6不是方程解,符合題意;B、將2代入得:,故2是方程解,不符合題意;C、將4代入得:,故4不是方程解,符合題意;D、將0代入得:,故0不是方程解,符合題意;故選:ACD.【考點】此題考查了一元二次方程解得含義,解題的關(guān)鍵是熟練掌握一元二次方程解得含義.三、填空題1、(答案不唯一)【解析】【分析】先根據(jù)二次函數(shù)的圖象和性質(zhì)取對稱軸x=2,設(shè)拋物線的解析式為y=a(x-2)2,由于在拋物線對稱軸的右邊,y隨x增大而減小,得出a<0,于是去a=-1,即可解答.【詳解】解:設(shè)拋物線的解析式為y=a(x-2)2,∵在拋物線對稱軸的右邊,y隨x增大而減小,∴a<0,符合上述條件的二次函數(shù)均可,可取a=-1,則y=-(x-2)2.故答案為:y=-(x-2)2.【考點】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).2、【解析】【分析】根據(jù)一元二次方程解的定義將x=1代入即可求出a的值.【詳解】解:∵關(guān)于的方程的一個根是∴解得:a=-1故答案為:.【考點】此題考查的是根據(jù)一元二次方程的解,求參數(shù)的值,掌握一元二次方程解的定義是解決此題的關(guān)鍵.3、【解析】【分析】連接OC交AB于點D,再連接OA.根據(jù)軸對稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【考點】本題考查軸對稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識點是解題關(guān)鍵.4、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負數(shù).注意:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義;當(dāng)二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.5、2或-3##-3或2【解析】【分析】根據(jù)題意得到關(guān)于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數(shù)運算,解一元二次方程,正確理解題意是解題的關(guān)鍵.四、解答題1、(1);(2)【解析】【分析】(1)根據(jù)題意先分類討論,當(dāng)售價超過50元但不超過80元時,上漲的價格是元,就少賣件,用原來的210件去減得到銷售量;當(dāng)售價超過80元,超過80的部分是元,就少賣件,用原來的210件先減去售價從50漲到80之間少賣的30件再減去得到最終的銷售量.(2)根據(jù)利潤=(售價-成本)銷量,現(xiàn)在的單件利潤是元,再去乘以(1)中兩種情況下的銷售量,得到銷售利潤關(guān)于售價的式子.【詳解】(1)當(dāng)時,,即.當(dāng)時,,即,則(2)由利潤=(售價-成本)×銷售量可以列出函數(shù)關(guān)系式為【考點】本題考查二次函數(shù)實際應(yīng)用中的利潤問題,關(guān)鍵在于根據(jù)題意列出銷量與售價之間的一次函數(shù)關(guān)系式以及熟悉求利潤的公式,需要注意本題要根據(jù)售價的不同范圍進行分類討論,結(jié)果要寫成分段函數(shù)的形式,還要標(biāo)上的取值范圍.2、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點】本題考查切線的判定和性質(zhì),等邊三角形的判定和性質(zhì),思想的面積公式等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.3、(1)y=﹣x2+2x+3;(2)①S四邊形ACFD=4;②Q點坐標(biāo)為(1,4)或(,)或(,).【解析】【分析】此題涉及的知識點是拋物線的綜合應(yīng)用,難度較大,需要有很好的邏輯思維,解題時先根據(jù)已知點的坐標(biāo)列方程求出函數(shù)解析式,然后再根據(jù)解析式和已知條件求出四邊形的面積和點的坐標(biāo).【詳解】(1)由題意可得,解得,∴拋物線解析式為y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x軸,∵A(﹣1,0),∴S四邊形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵點P在線段AB上,∴∠DAQ不可能為直角,∴當(dāng)△AQD為直角三角形時,有∠ADQ=90°或∠AQD=90°,i.當(dāng)∠ADQ=90°時,則DQ⊥AD,∵A(﹣1,0),D(2,3),∴直線AD解析式為y=x+1,∴可設(shè)直線DQ解析式為y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直線DQ解析式為y=﹣x+5,聯(lián)立直線DQ和拋物線解析式可得,解得或,∴Q(1,4);ii.當(dāng)∠AQD=90°時,設(shè)Q(t,﹣t2+2t+3),設(shè)直線AQ的解析式為y=k1x+b1,把A、Q坐標(biāo)代入可得,解得k1=﹣(t﹣3),設(shè)直線DQ解析式為y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,當(dāng)t=時,﹣t2+2t+3=,當(dāng)t=時,﹣t2+2t+3=,∴Q點坐標(biāo)為(,)或(,);綜上可知Q點坐標(biāo)為(1,4)或(,)或(,).【考點】此題重點考察學(xué)生對于拋物線的綜合應(yīng)用能力,熟練拋物線的圖像和性質(zhì),四邊形面積的計算方法,點坐標(biāo)的求解方式是解答本題的關(guān)鍵.4、(1)見詳解;(2)【解析】【分析】(1)根據(jù)一元二次方程根的判別式可直接進行求解;(2)利用一元二次方程根與系數(shù)的關(guān)系可直接進行求解.【詳解】(1)證明:∵,∴,∴,∵,∴,∴不論m取何值,方程總有兩個不相等的實數(shù)根;(2)解:∵,∴,∵方程有兩個實數(shù)根為,,∴,∵,∴,解得:.【考點】本題主要考查一元二次方程根的判別式及根與系數(shù)的關(guān)系,熟練掌握一元二次方程根的判別式及根與系數(shù)的關(guān)系是解題的關(guān)鍵.5、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標(biāo),然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標(biāo)進行數(shù)形結(jié)合畫圖找出d的取值范圍即可.【詳解】解:(1)當(dāng)直線l經(jīng)過點A(-3,0)時,d=;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 葫蘆元坊獎金制度
- 心臟電生理治療患者的護理
- 2026春季學(xué)期云南普洱市西盟縣教育體育局招募銀齡講學(xué)教師20人參考考試試題附答案解析
- 2026黑龍江黑河五大連池市房產(chǎn)服務(wù)中心招聘公益性崗位2人參考考試題庫附答案解析
- 2026重慶涪陵區(qū)武陵山鎮(zhèn)人民政府招聘1人參考考試試題附答案解析
- 2026廣達鐵路工程集團有限公司招聘2人(江蘇)備考考試題庫附答案解析
- 2026年安陽市北關(guān)區(qū)人社局招聘社區(qū)人社服務(wù)專員25名備考考試題庫附答案解析
- 2026山東事業(yè)單位統(tǒng)考濟寧經(jīng)濟開發(fā)區(qū)招聘初級綜合類崗位5人參考考試題庫附答案解析
- 2026年興業(yè)銀行南昌分行社會招聘參考考試題庫附答案解析
- 2026廣西來賓市事業(yè)單位統(tǒng)一公開招聘工作人員923人參考考試題庫附答案解析
- T-ZSA 232-2024 特種巡邏機器人通.用技術(shù)要求
- GB/T 45026-2024側(cè)掃聲吶海洋調(diào)查規(guī)范
- DB33 1121-2016 民用建筑電動汽車充電設(shè)施配置與設(shè)計規(guī)范
- IATF16949基礎(chǔ)知識培訓(xùn)教材
- DBJ-T 15-162-2019 建筑基坑施工監(jiān)測技術(shù)標(biāo)準(zhǔn)
- 中國慢性阻塞性肺疾病基層診療指南(2024年)解讀
- QB/T 2660-2024 化妝水(正式版)
- 不確定度評定(壓力表-)
- 復(fù)方蒲公英注射液抗腫瘤作用研究
- 神經(jīng)性皮炎基層診療指南
- (銀川市直部門之間交流)2022事業(yè)單位工作人員調(diào)動表
評論
0/150
提交評論