版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建廈門華僑中學(xué)2026屆十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.若正多邊形的一個(gè)內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.182.如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,則k值為()A.﹣14 B.14 C.7 D.﹣73.如圖,直線a∥b,∠ABC的頂點(diǎn)B在直線a上,兩邊分別交b于A,C兩點(diǎn),若∠ABC=90°,∠1=40°,則∠2的度數(shù)為()A.30° B.40° C.50° D.60°4.計(jì)算的結(jié)果是().A. B. C. D.5.如圖,△ABC是⊙O的內(nèi)接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°6.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,則下列結(jié)論:①a、b同號(hào);②當(dāng)x=1和x=3時(shí),函數(shù)值相等;③4a+b=1;④當(dāng)y=﹣2時(shí),x的值只能取1;⑤當(dāng)﹣1<x<5時(shí),y<1.其中,正確的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)7.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=68.如圖,A、B、C、D是⊙O上的四點(diǎn),BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°9.如圖,在矩形ABCD中,AB=5,AD=3,動(dòng)點(diǎn)P滿足S△PAB=S矩形ABCD,則點(diǎn)P到A、B兩點(diǎn)距離之和PA+PB的最小值為()A. B. C.5 D.10.如圖,點(diǎn)P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,OP為半徑的圓與x軸的正半軸交于點(diǎn)A,若△OPA的面積為S,則當(dāng)x增大時(shí),S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,是由一些小立方塊所搭幾何體的三種視圖,若在所搭幾何體的基礎(chǔ)上(不改變?cè)瓗缀误w中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個(gè)大正方體,至少還需要________個(gè)小立方塊.12.如圖,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分線MN交AC于點(diǎn)D,則∠DBC的度數(shù)是____________.13.若實(shí)數(shù)a、b在數(shù)軸上的位置如圖所示,則代數(shù)式|b﹣a|+化簡為_____.14.方程的解為__________.15.如圖,菱形OABC的頂點(diǎn)O是原點(diǎn),頂點(diǎn)B在y軸上,菱形的兩條對(duì)角線的長分別是6和4,反比例函數(shù)的圖象經(jīng)過點(diǎn)C,則k的值為.16.在實(shí)數(shù)﹣2、0、﹣1、2、中,最小的是_______.三、解答題(共8題,共72分)17.(8分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點(diǎn)D作DF⊥BC交BC的延長線于點(diǎn)F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請(qǐng)參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c218.(8分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點(diǎn)E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時(shí),其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.19.(8分)如圖,AB為☉O的直徑,CD與☉O相切于點(diǎn)E,交AB的延長線于點(diǎn)D,連接BE,過點(diǎn)O作OC∥BE,交☉O于點(diǎn)F,交切線于點(diǎn)C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當(dāng)∠D=°時(shí),四邊形FOBE是菱形.20.(8分)如圖,已知拋物線過點(diǎn)A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點(diǎn)M是拋物線AC段上的一個(gè)動(dòng)點(diǎn),當(dāng)圖中陰影部分的面積最小值時(shí),求點(diǎn)M的坐標(biāo);(3)在圖乙中,點(diǎn)C和點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,點(diǎn)P在拋物線上,且∠PAB=∠CAC1,求點(diǎn)P的橫坐標(biāo).21.(8分)給定關(guān)于x的二次函數(shù)y=kx2﹣4kx+3(k≠0),當(dāng)該二次函數(shù)與x軸只有一個(gè)公共點(diǎn)時(shí),求k的值;當(dāng)該二次函數(shù)與x軸有2個(gè)公共點(diǎn)時(shí),設(shè)這兩個(gè)公共點(diǎn)為A、B,已知AB=2,求k的值;由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會(huì)變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時(shí)得出以下結(jié)論:①與y軸的交點(diǎn)不變;②對(duì)稱軸不變;③一定經(jīng)過兩個(gè)定點(diǎn);請(qǐng)判斷以上結(jié)論是否正確,并說明理由.22.(10分)2018年“植樹節(jié)”前夕,某小區(qū)為綠化環(huán)境,購進(jìn)200棵柏樹苗和120棵棗樹苗,且兩種樹苗所需費(fèi)用相同.每棵棗樹苗的進(jìn)價(jià)比每棵柏樹苗的進(jìn)價(jià)的2倍少5元,每棵柏樹苗的進(jìn)價(jià)是多少元.23.(12分)解分式方程:=24.某初級(jí)中學(xué)正在展開“文明城市創(chuàng)建人人參與,志愿服務(wù)我當(dāng)先行”的“創(chuàng)文活動(dòng)”為了了解該校志愿者參與服務(wù)情況,現(xiàn)對(duì)該校全體志愿者進(jìn)行隨機(jī)抽樣調(diào)查.根據(jù)調(diào)查數(shù)據(jù)繪制了如下所示不完整統(tǒng)計(jì)圖.條形統(tǒng)計(jì)圖中七年級(jí)、八年級(jí)、九年級(jí)、教師分別指七年級(jí)、八年級(jí)、九年級(jí)、教師志愿者中被抽到的志愿者,扇形統(tǒng)計(jì)圖中的百分?jǐn)?shù)指的是該年級(jí)被抽到的志愿者數(shù)與樣本容量的比.請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;若該校共有志愿者600人,則該校九年級(jí)大約有多少志愿者?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】設(shè)多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.2、B【解析】過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(7,2),∴k,故選B.3、C【解析】
依據(jù)平行線的性質(zhì),可得∠BAC的度數(shù),再根據(jù)三角形內(nèi)和定理,即可得到∠2的度數(shù).【詳解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°?40°=50°,故選C.【點(diǎn)睛】本題考查的是平行線的性質(zhì),用到的知識(shí)點(diǎn)為:兩直線平行,內(nèi)錯(cuò)角相等.4、D【解析】
根據(jù)同底數(shù)冪的乘除法運(yùn)算進(jìn)行計(jì)算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘除運(yùn)算,解題的關(guān)鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.5、B【解析】
由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內(nèi)接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點(diǎn)睛】本題考查了圓周角定理,熟練運(yùn)用圓周角定理是解決問題的關(guān)鍵.6、A【解析】
根據(jù)二次函數(shù)的性質(zhì)和圖象可以判斷題目中各個(gè)小題是否成立.【詳解】由函數(shù)圖象可得,
a>1,b<1,即a、b異號(hào),故①錯(cuò)誤,
x=-1和x=5時(shí),函數(shù)值相等,故②錯(cuò)誤,
∵-=2,得4a+b=1,故③正確,
由圖象可得,當(dāng)y=-2時(shí),x=1或x=4,故④錯(cuò)誤,
由圖象可得,當(dāng)-1<x<5時(shí),y<1,故⑤正確,
故選A.【點(diǎn)睛】考查二次函數(shù)圖象與系數(shù)的關(guān)系,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.7、D【解析】
本題應(yīng)對(duì)原方程進(jìn)行因式分解,得出(x-6)(x+1)=1,然后根據(jù)“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點(diǎn)睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的提點(diǎn)靈活選用合適的方法.本題運(yùn)用的是因式分解法.8、A【解析】
解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點(diǎn)B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.9、D【解析】解:設(shè)△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動(dòng)點(diǎn)P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對(duì)稱點(diǎn)E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.10、D【解析】
作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、54【解析】試題解析:由主視圖可知,搭成的幾何體有三層,且有4列;由左視圖可知,搭成的幾何體共有3行;第一層有7個(gè)正方體,第二層有2個(gè)正方體,第三層有1個(gè)正方體,共有10個(gè)正方體,∵搭在這個(gè)幾何體的基礎(chǔ)上添加相同大小的小正方體,以搭成一個(gè)大正方體,∴搭成的大正方體的共有4×4×4=64個(gè)小正方體,∴至少還需要64-10=54個(gè)小正方體.【點(diǎn)睛】先由主視圖、左視圖、俯視圖求出原來的幾何體共有10個(gè)正方體,再根據(jù)搭成的大正方體的共有4×4×4=64個(gè)小正方體,即可得出答案.本題考查了學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查,關(guān)鍵是求出搭成的大正方體共有多少個(gè)小正方體.12、15°【解析】分析:根據(jù)等腰三角形的性質(zhì)得出∠ABC的度數(shù),根據(jù)中垂線的性質(zhì)得出∠ABD的度數(shù),最后求出∠DBC的度數(shù).詳解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵M(jìn)N為AB的中垂線,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.點(diǎn)睛:本題主要考查的是等腰三角形的性質(zhì)以及中垂線的性質(zhì)定理,屬于中等難度的題型.理解中垂線的性質(zhì)是解決這個(gè)問題的關(guān)鍵.413、2a﹣b.【解析】
直接利用數(shù)軸上a,b的位置進(jìn)而得出b﹣a<0,a>0,再化簡得出答案.【詳解】解:由數(shù)軸可得:b﹣a<0,a>0,則|b﹣a|+=a﹣b+a=2a﹣b.故答案為2a﹣b.【點(diǎn)睛】此題主要考查了二次根式的性質(zhì)與化簡,正確得出各項(xiàng)符號(hào)是解題關(guān)鍵.14、【解析】
兩邊同時(shí)乘,得到整式方程,解整式方程后進(jìn)行檢驗(yàn)即可.【詳解】解:兩邊同時(shí)乘,得,解得,檢驗(yàn):當(dāng)時(shí),≠0,所以x=1是原分式方程的根,故答案為:x=1.【點(diǎn)睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項(xiàng)是解題的關(guān)鍵.15、-6【解析】
分析:∵菱形的兩條對(duì)角線的長分別是6和4,∴A(﹣3,2).∵點(diǎn)A在反比例函數(shù)的圖象上,∴,解得k=-6.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?6、﹣1.【解析】
解:在實(shí)數(shù)﹣1、0、﹣1、1、中,最小的是﹣1,故答案為﹣1.【點(diǎn)睛】本題考查實(shí)數(shù)大小比較.三、解答題(共8題,共72分)17、見解析.【解析】
首先連結(jié)BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【詳解】證明:連結(jié)BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【點(diǎn)睛】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關(guān)鍵.18、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解析】
(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進(jìn)而可利用SAS證明△CQB≌△CPA,進(jìn)而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進(jìn)一步即可證得結(jié)論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因?yàn)椤鱌EM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;
(3)連結(jié)CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關(guān)計(jì)算、30°角的直角三角形的性質(zhì)等知識(shí),涉及的知識(shí)點(diǎn)多、綜合性強(qiáng),靈活應(yīng)用全等三角形的判定和性質(zhì)、熟練掌握旋轉(zhuǎn)的性質(zhì)和相關(guān)圖形的性質(zhì)是解題的關(guān)鍵.19、(1)詳見解析;(2)30.【解析】
(1)利用切線的性質(zhì)得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數(shù).【詳解】(1)證明:∵CD與⊙O相切于點(diǎn)E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點(diǎn)睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點(diǎn)的半徑.判定切線時(shí)“連圓心和直線與圓的公共點(diǎn)”或“過圓心作這條直線的垂線”;有切線時(shí),常?!坝龅角悬c(diǎn)連圓心得半徑”.也考查了圓周角定理.20、(1)y=12x2-x-4(2)點(diǎn)M的坐標(biāo)為(2,-4)(3)-83【解析】【分析】(1)設(shè)交點(diǎn)式y(tǒng)=a(x+2)(x-4),然后把C點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;
(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,12m2-m-4.由題意知,當(dāng)四邊形OAMC面積最大時(shí),陰影部分的面積最小.S四邊形OAMC=S△OAM(3)拋物線的對(duì)稱軸為直線x=1,點(diǎn)C與點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設(shè)點(diǎn)Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,1由題意知,當(dāng)四邊形OAMC面積最大時(shí),陰影部分的面積最小.S四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當(dāng)m=2時(shí),四邊形OAMC面積最大,此時(shí)陰影部分面積最小,所以點(diǎn)M的坐標(biāo)為(2,-4).(3)∵拋物線的對(duì)稱軸為直線x=1,點(diǎn)C與點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設(shè)點(diǎn)Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點(diǎn)P的橫坐標(biāo)為-83或-4【點(diǎn)睛】本題考核知識(shí)點(diǎn):二次函數(shù)綜合運(yùn)用.解題關(guān)鍵點(diǎn):熟記二次函數(shù)的性質(zhì),數(shù)形結(jié)合,由所求分析出必知條件.21、(1)(2)1(3)①②③【解析】
(1)由拋物線與x軸只有一個(gè)交點(diǎn),可知△=0;(2)由拋物線與x軸有兩個(gè)交點(diǎn)且AB=2,可知A、B坐標(biāo),代入解析式,可得k值;(3)通過解析式求出對(duì)稱軸,與y軸交點(diǎn),并根據(jù)系數(shù)的關(guān)系得出判斷.【詳解】(1)∵二次函數(shù)y=kx2﹣4kx+3與x軸只有一個(gè)公共點(diǎn),∴關(guān)于x的方程kx2﹣4kx+3=0有兩個(gè)相等的實(shí)數(shù)根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=,k≠0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 導(dǎo)演電影合同范本
- 開模具合同范本
- 打田機(jī)井合同范本
- 工資支付合同范本
- 山莊收購合同范本
- 店面運(yùn)營合同范本
- 律師以合同范本
- 工地餐飲合同范本
- 年末結(jié)賬合同范本
- 承兌貼現(xiàn)協(xié)議合同
- 文物復(fù)仿制合同協(xié)議
- 大貨車司機(jī)管理制度
- 建設(shè)工程施工許可流程
- 2025年新版富士康考試試題及答案全部
- 【低空經(jīng)濟(jì)】低空經(jīng)濟(jì)校企合作方案
- 家具制造行業(yè)企業(yè)專用檢查表
- 2025至2030中國冷凍機(jī)油行業(yè)項(xiàng)目調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 以租代購房子合同范本
- 2025年地質(zhì)勘查面試題庫及答案
- 書法啟蒙課件
- 烏茲別克斯坦國家介紹
評(píng)論
0/150
提交評(píng)論