綜合解析吉林省敦化市中考數學真題分類(勾股定理)匯編同步測評試卷(含答案詳解版)_第1頁
綜合解析吉林省敦化市中考數學真題分類(勾股定理)匯編同步測評試卷(含答案詳解版)_第2頁
綜合解析吉林省敦化市中考數學真題分類(勾股定理)匯編同步測評試卷(含答案詳解版)_第3頁
綜合解析吉林省敦化市中考數學真題分類(勾股定理)匯編同步測評試卷(含答案詳解版)_第4頁
綜合解析吉林省敦化市中考數學真題分類(勾股定理)匯編同步測評試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省敦化市中考數學真題分類(勾股定理)匯編同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、下列四組數中,是勾股數的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,2、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點F,設BC=a,AC=b,AB=c,則下列關系式中成立的是(

)A.a2+b2=5c2 B.a2+b2=4c2 C.a2+b2=3c2 D.a2+b2=2c23、下列各組數據為三角形的三邊,能構成直角三角形的是(

)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,54、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結論中不正確的是(

)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形5、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.456、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點,A點有一只螞蟻,想到B點去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(

)A.6 B.8 C.9 D.157、如圖,桌上有一個圓柱形玻璃杯(無蓋)高6厘米,底面周長16厘米,在杯口內壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(

)A.厘米 B.10厘米 C.厘米 D.8厘米第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在一次綜合實踐活動中,小明將一張邊長為的正方形紙片,沿著邊上一點與點的連線折疊,點是點的對應點,延長交于點,經測量,,則的面積為______.2、如圖,在中,,,,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點處,兩條折痕與斜邊AB分別交于點E、F,則DF的長為_________.3、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D.E為線段BD上一點,連結CE,將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上.若AB=10,BC=8,則△ACE的面積為________.4、如圖,在的網格中每個小正方形的邊長都為1,的頂點、、都在格點上,點為邊的中點,則線段的長為________.5、如圖,已知中,,,動點M滿足,將線段繞點C順時針旋轉得到線段,連接,則的最小值為_________.6、如圖,在的正方形網格中,每個小正方形的頂點稱為格點,點、、均在格點上,則______.7、如圖,將矩形紙片ABCD沿EF折疊,使D點與BC邊的中點D′重合.若BC=8,CD=6,則CF的長為_________________.8、如圖,在一次綜合實踐活動中,小明將一張邊長為10cm的正方形紙片ABCD,沿著BC邊上一點E與點A的連線折疊,點B'是點B的對應點,延長EB'交DC于點G,B'G=cm,則△ECG的面積為_____cm2.三、解答題(7小題,每小題10分,共計70分)1、如圖,有一架秋千,當他靜止時,踏板離地的垂直高度,將他往前推送(水平距離)時,秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長度.2、如圖所示的一塊地,已知,,,,,求這塊地的面積.3、如圖,把長方形紙片沿折疊,使點落在邊上的點處,點落在點處.(1)試說明;(2)設,,,試猜想,,之間的關系,并說明理由.4、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學習小組經過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.5、如圖,點B,F,C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長.6、我國古代的數學名著《九章算術》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠.問:折處離地還有多高的竹子?(1丈=10尺)7、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.-參考答案-一、單選題1、A【解析】【分析】欲判斷是否為勾股數,必須根據勾股數是正整數,同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數,是勾股數,故此選項符合題意;B、42+52≠62,不是勾股數,故此選項不合題意;C、22+32≠42,不是勾股數,故此選項不合題意;D、,不是正整數,不是勾股數,故此選項不合題意;故選:A.【考點】此題主要考查了勾股數,解答此題要用到勾股數組的定義,如果a,b,c為正整數,且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數.2、A【解析】【詳解】設EF=x,DF=y(tǒng),根據三角形重心的性質得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關系.【解答】解:設EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點評】本題考查了三角形的重心:重心到頂點的距離與重心到對邊中點的距離之比為2:1.也考查了勾股定理.3、D【解析】【分析】根據勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進行判斷.【詳解】A、42+72≠82,故不能構成直角三角形;B、22+22≠22,故不能構成直角三角形;C、2+2=4,故不能構成三角形,不能構成直角三角形;D、52+122=132,故能構成直角三角形,故選D.【考點】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.4、A【解析】【分析】根據直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果

a2=b2-c2,即b2=a2+c2,那么△ABC

是直角三角形且∠B=90°,選項錯誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC

是直角三角形,選項正確,不符合題意;C、如果

a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC

是直角三角形,選項正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC

是直角三角形,選項正確,不符合題意;故選:A.【考點】本題考查的是直角三角形的判定和勾股定理的逆定理的應用,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.5、A【解析】【分析】設正方形D的面積為x,根據圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據圖形得:2+4=x?3.解得:x=9.故選A.【考點】本題考查了勾股定理,根據圖形推出四個正方形的關系是解決問題的關鍵.6、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點到A點的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因為AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點】本題考查了勾股定理的應用,掌握勾股定理的應用并能得出平面展開圖是解題的關鍵.7、B【解析】【分析】把圓柱沿著點A所在母線展開,把圓柱上最短距離轉化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點A所在母線展開,如圖所示,作點A的對稱點B,連接PB,則PB為所求,根據題意,得PC=8,BC=6,根據勾股定理,得PB=10,故選B.【考點】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉化為將軍飲馬河問題,靈活使用勾股定理是解題的關鍵.二、填空題1、##【解析】【分析】根據題意,,進而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點】本題考查了折疊的性質,勾股定理,掌握勾股定理是解題的關鍵.2、【解析】【分析】根據折疊的性質可得,,從而得出相應角相等,再根據角之間的關系得出,從而得出為等腰直角三角形,再根據勾股定理求出的長度,利用三角形的面積公式求出的長度,再求出、的長度,最后求出的長度.【詳解】解:∵邊AC沿CE翻折,使點A落在AB上的點D處,∴,∴,,,∵邊BC沿CF翻折,使點B落在CD的延長線上的點處,∴,∴,∵,∴,∴為等腰直角三角形,∴,∵,,,∴,∵,∴,∴,∴.故答案為:.【考點】本題主要考查了圖形的翻折變化,勾股定理的運用,等腰直角三角形的判定,根據折疊的性質求得相應的角是解答本題的關鍵.3、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點】本題考查直角三角形中的折疊問題,解題的關鍵是掌握折疊的性質,熟練運用勾股定理.4、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點O為AB邊的中點,∴CO=AB=2.5,故答案為:2.5.【考點】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關鍵.5、##【解析】【分析】證明△AMC≌△BNC,可得,再根據三角形三邊關系得出當點N落在線段AB上時,最小,求出最小值即可.【詳解】解:∵線段繞點C順時針旋轉得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點】本題考查了全等三角形的判定與性質,勾股定理,解題關鍵是證明三角形全等,得出,根據三角形三邊關系取得最小值.6、45°##45度【解析】【分析】取正方形網格中格點Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計算PQ=QB,進而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網格中格點Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關鍵.7、【解析】【分析】設,在中利用勾股定理求出x即可解決問題.【詳解】解:∵是的中點,,,∴,由折疊的性質知:,設,則,在中,根據勾股定理得:,即:,解得,∴.故答案為:【考點】本題考查翻折變換、勾股定理,解題的關鍵是利用翻折不變性解決問題,學會轉化的思想,利用方程的去思考問題,屬于中考??碱}型.8、【解析】【分析】根據翻折的性質可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設BE=xcm,根據勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據翻折的性質可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點】本題考查了勾股定理的應用,結合全等的知識找出題中的線段之間的關系是本題的解題關鍵.三、解答題1、【解析】【分析】設秋千的繩索長為,則,,利用勾股定理得,再解方程即可得出答案.【詳解】解:設秋千的繩索長為,則,,在中,,即,解得,答:繩索的長度是.【考點】此題主要考查了勾股定理的應用,關鍵是正確理解題意,表示出AC、AB的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.2、【解析】【分析】根據勾股定理求得的長,再根據勾股定理的逆定理判定為直角三角形,從而不難求得這塊地的面積.【詳解】解:連接.,,為直角三角形,,這塊地的面積.【考點】本題考查了學生對勾股定理及其逆定理的理解及運用能力,解題的關鍵是掌握勾股定理的知識.3、(1)證明見解析;(2),,之間的關系是.理由見解析.【解析】【分析】(1)根據折疊的性質、平行的性質及等角對等邊即可說明;(2)根據折疊的性質將AE、AB、BF都轉化到直角三角形中,由勾股定理可得,,之間的關系.【詳解】(1)由折疊的性質,得,,在長方形紙片中,,∴,∴,∴,∴.(2),,之間的關系是.理由如下:由(1)知,由折疊的性質,得,,.在中,,所以,所以.【考點】本題主要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論