版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽無為縣襄安中學7年級數(shù)學下冊第五章生活中的軸對稱綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列學習類APP的圖表中,可看作是軸對稱圖形的是()A. B. C. D.2、下列圖案屬于軸對稱圖形的是()A. B. C. D.3、下列圖案中,屬于軸對稱圖形的是()A. B. C. D.4、下列圖形中,不是軸對稱圖形的是()A. B. C. D.5、下列所述圖形中,不是軸對稱圖形的是()A.矩形 B.平行四邊形 C.正五邊形 D.正三角形6、如圖,AD,BE,CF依次是ABC的高、中線和角平分線,下列表達式中錯誤的是()A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF7、下列圖形是四家電信公司的標志,其中是軸對稱圖形的是()A. B.C. D.8、下列圖案是軸對稱圖形的是()A. B. C. D.9、如圖,直線MN是四邊形MANB的對稱軸,點P在MN上.則下列結(jié)論錯誤的是()A.AM=BM B.AP=BN C.∠ANM=∠BNM D.∠MAP=∠MBP10、下列圖案中,有且只有三條對稱軸的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,四邊形ABCD中,AD∥BC,直線l是它的對稱軸,∠B=53°,則∠D的大小為______°.2、在一條可以折疊的數(shù)軸上,A,B表示的數(shù)分別是-16,9,如圖,以點C為折點,將此數(shù)軸向右對折,若點A在點B的右邊,且AB=1,則C點表示的數(shù)是_______.3、如圖,是軸對稱圖形且只有兩條對稱軸的是__________(填序號).4、如圖,如圖,∠AOB=45o,點M、N分別在射線OA、OB上,MN=7,△OMN的面積為14,P是直線MN上的動點,點P關于OA對稱的點為P1,點P關于OB對稱點為P2,當點P在直線NM上運動時,∠P1OP2=___°,△OP1P2的面積最小值為___.5、如圖,直線AD為ABC的對稱軸,BC=6,AD=4,則圖中陰影部分的面積為__________.6、如圖,將一張長方形紙片ABCD(它的每一個角等于90°)沿EF折疊,使點D落在AB邊上的點M處,折疊后點C的對應點為點N.若∠AME=50°,則∠EFB=_____°.7、如果一個圖形沿一條直線________,直線兩旁的部分能夠________,這個圖形就叫做____;這條直線就是它的________.8、如圖,點D與點D'關于AE對稱,∠CED'=60°,則∠AED的度數(shù)為____.9、如圖,在長方形ABCD中,AD=BC=5,AB=CD=12,AC=13,動點M在線段AC上運動(不與端點重合),點M關于邊AD,DC的對稱點分別為M1,M2,連接M1M2,點D在M1M2上,則在點M的運動過程中,線段M1M2長度的最小值是_______.10、在“線段、鈍角、三角形、等腰三角形、圓”這五個圖形中,是軸對稱圖形的有____個.三、解答題(6小題,每小題10分,共計60分)1、如圖,已知線段a,利用尺規(guī)求作以a為底?以為高的等腰三角形.2、如圖,平面直角坐標系中,△ABC的頂點A(0,-2),B(2,-4),C(4,-1);(1)畫出與△ABC關于軸對稱的圖形△A1B1C1,并寫出點B1的坐標;(2)四邊形AA1C1C的面積為___________3、如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.(1)在圖中畫出與△ABC關于直線l成軸對稱的△A1B1C1;(2)△A1B1C1的面積為______;(3)線段CC1被直線l______.4、如圖,三個頂點的坐標分別為,,(1)請畫出關于軸成軸對稱的圖形;(2)寫出、、的坐標;5、如圖,正方形網(wǎng)格中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,點A,B都在格點上,按下列要求作圖,使得所畫圖形的頂點均在格點上.(1)在圖1中畫一個以線段為邊的軸對稱,使其面積為2;(2)在圖2中畫一個以線段為邊的軸對稱四邊形,使其面積為6.6、如圖,在正方形網(wǎng)格中,點A、B、C、M、N都在格點上.(1)作△ABC關于直線MN對稱的圖形△A'B'C';(2)作出AB邊上的中線;(3)若每個小正方形邊長均為1,則△ABC的面積=______.-參考答案-一、單選題1、C【分析】根據(jù)軸對稱圖形的定義逐一進行判斷即可得答案.【詳解】A.不是軸對稱圖形,故該選項不符合題意,B.不是軸對稱圖形,故該選項不符合題意,C.是軸對稱圖形,故該選項符合題意,D.不是軸對稱圖形,故該選項不符合題意,故選:C.【點睛】本題考查的是軸對稱圖形,如果一個圖形沿著一條直線對折后兩部分完全重合,那么這樣的圖形就叫做軸對稱圖形;軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、C【分析】根據(jù)如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析.【詳解】解:A、不是軸對稱圖形,故此選項不符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、是軸對稱圖形,故此選項符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.3、B【詳解】解:A、不是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,故本選項符合題意;C、不是軸對稱圖形,故本選項不符合題意;D、不是軸對稱圖形,故本選項不符合題意;故選:B【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.4、A【詳解】解:A、不是軸對稱圖形,故本選項符合題意;B、是軸對稱圖形,故本選項不符合題意;C、是軸對稱圖形,故本選項不符合題意;D、是軸對稱圖形,故本選項不符合題意;故選:A【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.5、B【分析】由軸對稱圖形的定義對選項判斷即可.【詳解】矩形為軸對稱圖形,不符合題意,故錯誤;平行四邊形不是軸對稱圖形,符合題意,故正確;正五邊形為軸對稱圖形,不符合題意,故錯誤;正三角形為軸對稱圖形,不符合題意,故錯誤;故選:B.【點睛】本題考查了軸對稱圖形的概念,如果一個平面圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.識別軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.6、C【分析】根據(jù)三角形的高、中線和角平分線的定義(1)三角形的角平分線定義:三角形的一個角的平分線與這個角的對邊相交,連接這個角的頂點和交點的線段叫做三角形的角平分線;(2)三角形的中線定義:在三角形中,連接一個頂點和它所對邊的中點的連線段叫做三角形的中線;(3)三角形的高定義:從三角形一個頂點向它的對邊(或?qū)吽诘闹本€)作垂線,頂點和垂足間的線段叫做三角形的高線,簡稱為高.求解即可.【詳解】解:A、BE是△ABC的中線,所以AE=CE,故本表達式正確;B、AD是△ABC的高,所以∠ADC=90,故本表達式正確;C、由三角形的高、中線和角平分線的定義無法得出∠CAD=∠CBE,故本表達式錯誤;D、CF是△ABC的角平分線,所以∠ACB=2∠ACF,故本表達式正確.故選:C.【點睛】本題考查了三角形的高、中線和角平分線的定義,是基礎題,熟記定義是解題的關鍵.7、C【詳解】解:A、不是軸對稱圖形,故此選項不符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、是軸對稱圖形,故此選項符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:C.【點睛】本題考查了軸對稱圖形的定義,解題的關鍵是熟練掌握軸對稱圖形的定義:平面內(nèi),一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形.8、C【分析】根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】解:選項A、B、D均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,選項C能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,故選:C.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.9、B【分析】根據(jù)軸對稱的性質(zhì)可以得到AM=BM,∠ANM=∠BNM,∠MAP=∠MBP,由此即可得到答案.【詳解】解:∵直線MN是四邊形MANB的對稱軸,∴AM=BM,∠ANM=∠BNM,∠MAP=∠MBP,故A、C、D選項不符合題意;根據(jù)現(xiàn)有條件,無法推出AP=BN,故B選項符合題意;故選B.【點睛】本題主要考查了軸對稱圖形的性質(zhì),解題的關鍵在于能夠熟練掌握軸對稱圖形的性質(zhì):成軸對稱圖形的兩個圖形全等,如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.10、D【詳解】解:A、不是軸對稱圖形,故不符合題意;B、有四條對稱軸,故不符合題意;C、不是軸對稱圖形,故不符合題意;D、有三條對稱軸,故符合題意.故選:D.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.二、填空題1、127【分析】根據(jù)軸對稱性質(zhì)得出∠C=∠B=53°,根據(jù)平行線性質(zhì)得出∠C+∠D=180°即可.【詳解】解:直線l是四邊形ABCD的對稱軸,∠B=53°,∴∠C=∠B=53°,∵AD∥BC,∴∠C+∠D=180°,∴∠D=180°-53°=127°.故答案為:127.【點睛】本題考查軸對稱性質(zhì),平行線性質(zhì),求一個角的的補角,掌握軸對稱性質(zhì),平行線性質(zhì),求一個角的的補角.2、-3【分析】根據(jù)A與B表示的數(shù)求出AB的長,再由折疊后AB的長,求出BC的長,即可確定出C表示的數(shù).【詳解】解:∵A,B表示的數(shù)為?16,9,∴AB=9?(?16)=25,∵折疊后AB=1,∴BC==12,∵點C在B的左側(cè),∴C點表示的數(shù)為9-12=?3.故答案為:-3.【點睛】此題考查了數(shù)軸,折疊的性質(zhì),熟練掌握各自的性質(zhì)是解本題的關鍵.3、①②【分析】一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,那么這個圖形就是軸對稱圖形,這條直線就是它的一條對稱軸,由此即可判斷圖形的對稱軸條數(shù)及位置.【詳解】圖標中,是軸對稱圖形的有①②③,其中只有2條對稱軸的是①②,有4條對稱軸的是③。故答案為:①②.【點睛】此題考查了利用軸對稱圖形的定義判斷軸對稱圖形的對稱軸條數(shù)的靈活應用,這里要求學生熟記已學過的特殊圖形的對稱軸特點進行解答.4、90°8【分析】連接OP,過點O作OH⊥NM交NM的延長線于H.首先利用三角形的面積公式求出OH,再證明△OP1P2是等腰直角三角形,OP最小時,△OP1P2的面積最?。驹斀狻拷猓哼B接OP,過點O作OH⊥NM交NM的延長線于H.∵S△OMN=?MN?OH=14,MN=7,∴OH=4,∵點P關于OA對稱的點為P1,點P關于OB對稱點為P2,∴∠AOP=∠AOP1,∠POB=∠P2OB,OP=OP1=OP2∵∠AOB=45°,∴∠P1OP2=2(∠POA+∠POB)=90°,∴△OP1P2是等腰直角三角形,∴OP=OP1最小時,△OP1P2的面積最小,根據(jù)垂線段最短可知,OP的最小值為4,∴△OP1P2的面積的最小值=×4×4=8,故答案為90°;8.【點睛】本題考查軸對稱,三角形的面積,垂線段最短等知識,解題的關鍵是證明△OP1P2是等腰直角三角形,屬于中考??碱}型.5、6【分析】根據(jù)軸對稱的性質(zhì)判斷出陰影部分的面積的和等于三角形的面積的一半,AD⊥BC,然后根據(jù)三角形的面積列式計算即可得解.【詳解】解:∵AD所在的直線是△ABC的對稱軸,∴陰影部分的面積的和等于三角形的面積的一半,AD⊥BC,∴陰影部分的面積和=×(×6×4)=6.故答案為:6.【點睛】本題考查軸對稱的性質(zhì),對應點的連線與對稱軸的位置關系是互相垂直,對應點所連的線段被對稱軸垂直平分,對稱軸上的任何一點到兩個對應點之間的距離相等,對應的角、線段都相等.6、70【分析】根據(jù)折疊的性質(zhì)可得∠DEF=∠MEF、∠A=90°、∠EFB=∠DEF,再根據(jù)∠AME=50°可得∠AEM=90°﹣∠AME=90°﹣50°=40°,進而求得∠DEF,最后根據(jù)平行線的性質(zhì)解答即可.【詳解】解:∵長方形紙片ABCD(它的每一個角等于90°)沿EF折疊,∴∠DEF=∠MEF,∠A=90°,∠EFB=∠DEF,∵∠AME=50°,∴∠AEM=90°﹣∠AME=90°﹣50°=40°,∴∠DEM=180°﹣∠AEM=180°﹣40°=140°,∴∠DEF=∠MEF=.∴∠EFB=70°,故填:70.【點睛】本題主要考查了折疊的性質(zhì)、平行線的性質(zhì)等知識點,理解折疊的性質(zhì)成為解答本題的關鍵.7、折疊互相重合軸對稱圖形對稱軸【分析】根據(jù)軸對稱圖形的概念直接填空即可.【詳解】解:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.故答案為:折疊,互相重合,軸對稱圖形,對稱軸.【點睛】本題考查了軸對稱圖形的概念,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸,解題關鍵是熟記定義.8、60°【分析】由軸對稱的性質(zhì)可得,再根據(jù),求解即可.【詳解】解:由對稱的性質(zhì)可得,又∵,∴,故答案為.【點睛】此題考查了軸對稱的性質(zhì),以及鄰補角的性質(zhì),解題的關鍵是掌握軸對稱以及鄰補角的性質(zhì).9、【分析】過D作于,連接,根據(jù)題意可得,從而可以判定M1M2最小值為,即可求解.【詳解】解:過D作于,連接,如圖:長方形ABCD中,AD=BC=5,AB=CD=12,AC=13,∴∴,∵M關于邊AD,DC的對稱點分別為M1,M2,∴DM1=DM=DM2,∴,線段M1M2長度最小即是DM長度最小,此時DM⊥AC,即M與重合,M1M2最小值為.故答案為:.【點睛】此題考查了軸對稱的性質(zhì),掌握軸對稱的有關性質(zhì)將的最小值轉(zhuǎn)化為的最小值是解題的關鍵.10、【分析】軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,根據(jù)軸對稱圖形的概念求解即可.【詳解】解:根據(jù)軸對稱圖形的定義可知:線段、鈍角、等腰三角形和圓都是軸對稱圖形.而三角形不一定是軸對稱圖形.故答案為:4.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.三、解答題1、見解析【分析】作一條線段等于已知線段,作這條線段的垂直平分線,以線段的中點為端點在線段垂直平分線的一側(cè)上截取長為2a的線段,即可得到所求作的等腰三角形.【詳解】解:由題意得所作的滿足條件的等腰△ABC如下:【點睛】本題考查了用尺規(guī)作等腰三角形,所涉及的基本尺規(guī)作圖有:作一條線段等于已知線段;作已知線段的垂直平分線.掌握這兩個基本作圖是關鍵.2、(1)見解析;(2,4);(2)12【分析】(1)根據(jù)關于x軸對稱的點的坐標特征寫出頂點A1,B1,C1的坐標,然后連線即可;(2)作出圖象可得四邊形為等腰梯形,根據(jù)梯形面積公式求解即可.【詳解】解:(1)先找出對稱點A1(0,2),B1(2,4),C1(4,1),依次連接,如圖,△A1B1C1為所作;∴B1(2,4);(2)如圖所示,四邊形為等腰梯形,,,,∴,故答案為:12.【點睛】本題考查了作軸對稱圖形:先找對稱點然后依次連接即可,結(jié)合圖象求解是解題關鍵.3、(1)見解析;(2)3;(3)垂直平分【分析】(1)分別作出B、C關于直線l的對稱點即可;(2)用一個矩形的面積分別減去三個直角三角形的面積去計算△A1B1C1的面積;(3)根據(jù)軸對稱的性質(zhì)矩形判斷.【詳解】解:(1)如圖,△A1B1C1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (新教材)2026年青島版八年級上冊數(shù)學 3.1 分式 課件
- 居家護理質(zhì)量改進
- 基礎護理感染控制
- 2025年保險理賠委托協(xié)議
- 八年級上冊語文期末作文押題死啃這6篇滿分作文
- 房地產(chǎn) -溫哥華工業(yè)數(shù)據(jù)2025年第三季度 Vancouver Industrial Figures Q3 2025
- 培訓行業(yè)競爭態(tài)勢
- 2026 年中職康復治療技術(物理治療)試題及答案
- 辨識吸毒人員題目及答案
- 2024年中考道德與法治(全國)第二次模擬考試一(含答案)
- 《山東省市政工程消耗量定額》2016版交底培訓資料
- (新版)無人機駕駛員理論題庫(全真題庫)
- CJ/T 216-2013給水排水用軟密封閘閥
- 白介素6的課件
- 2025保險公司定期存款合同書范本
- 《t檢驗統(tǒng)計》課件
- 醫(yī)學檢驗考試復習資料
- DBJ50T-建筑分布式光伏電站消防技術標準
- 某工程消防系統(tǒng)施工組織設計
- 軍事訓練傷的防治知識
- 應急管理理論與實踐 課件 第3、4章 應急預案編制與全面應急準備、應急響應啟動與科學現(xiàn)場指揮
評論
0/150
提交評論