版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,從袋子中隨機摸出一個球,這個球是白球的概率是()A. B. C. D.2、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.103、在平面直角坐標系中,已知點與點關于原點對稱,則的值為()A.4 B.-4 C.-2 D.24、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數(shù)是()A.個 B.個 C.個 D.個5、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機從盒子中摸出一個球記錄顏色后放回.經(jīng)過多次試驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數(shù)約為()A.12 B.15 C.18 D.236、下列事件中,是必然事件的是()A.實心鐵球投入水中會沉入水底B.車輛隨機到達一個路口,遇到紅燈C.打開電視,正在播放《大國工匠》D.拋擲一枚硬幣,正面向上7、下列說法錯誤的是()A.必然事件發(fā)生的概率是1 B.不可能事件發(fā)生的概率為0C.隨機事件發(fā)生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能發(fā)生8、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、到點的距離等于8厘米的點的軌跡是__.2、已知⊙A的半徑為5,圓心A(4,3),坐標原點O與⊙A的位置關系是______.3、過年時包了100個餃子,其中有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是_____.4、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.5、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.6、點P為邊長為2的正方形ABCD內(nèi)一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉60°得到線段MQ,連接AQ、PQ,則的最小值為______.7、為了落實“雙減”政策,朝陽區(qū)一些學校在課后服務時段開設了與冬奧會項目冰壺有關的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.三、解答題(7小題,每小題0分,共計0分)1、如圖,拋物線y=-+x+2與x軸負半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標;(2)如圖1,點C在y軸右側的拋物線上,且AC=BC,求點C的坐標;(3)如圖2,將△ABO繞平面內(nèi)點P順時針旋轉90°后,得到△DEF(點A,B,O的對應點分別是點D,E,F(xiàn)),D,E兩點剛好在拋物線上.①求點F的坐標;②直接寫出點P的坐標.2、如圖,AB是的直徑,CD是的一條弦,且于點E.(1)求證:;(2)若,,求的半徑.3、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.4、如圖,是由若干個完全相同的小正方體組成的一個幾何體.從左面、上面觀察如圖所示的幾何體,分別畫出你所看到的平面圖形.5、如圖,在直角坐標平面內(nèi),已知點A的坐標(﹣2,0).(1)圖中點B的坐標是______;(2)點B關于原點對稱的點C的坐標是_____;點A關于y軸對稱的點D的坐標是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點F,使,那么點F的所有可能位置是______.6、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個單位的速度沿向右運動,當點E到達點C時停止運動,直接寫出在運動過程中與重疊部分面積S與運動時間t(單位:秒)的函數(shù)關系式;(2)點M為線段的中點,當(1)中的頂點E運動到點C后,將繞著點C繼續(xù)順時針旋轉得到,點P是直線上一動點,連接,求的最小值.7、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.-參考答案-一、單選題1、D【分析】根據(jù)隨機事件概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A),進行計算即可.【詳解】解:∵一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,∴抽到每個球的可能性相同,∴布袋中任意摸出1個球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點睛】本題考查了隨機事件概率的求法,熟練掌握隨機事件概率公式是解題關鍵.2、C【分析】連接,根據(jù)垂徑定理可得,設的半徑為,則,進而勾股定理列出方程求得半徑,進而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設的半徑為,則在中,,即解得即故選C【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.3、C【分析】根據(jù)關于原點對稱的點的坐標特點:兩個點關于原點對稱時,它們的坐標符號相反即可得到答案.【詳解】解:點與點關于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標特點,解題的關鍵是掌握點的變化規(guī)律.4、D【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數(shù)是6,故選D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.5、A【分析】由題意可設盒子中紅球的個數(shù)x,則盒子中球的總個數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關系可得出摸到紅球的概率為30%,再根據(jù)概率的計算公式計算即可.【詳解】解:設盒子中紅球的個數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個數(shù)是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運用,利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=;頻率與概率的關系生:一般地,在大量的重復試驗中,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數(shù)p,我們稱事件A發(fā)生的概率為p.6、A【分析】根據(jù)必然事件、不可能事件、隨機事件的概念進行判斷即可.【詳解】解:A、實心鐵球投入水中會沉入水底,是必然事件,該選項符合題意;B、車輛隨機到達一個路口,遇到紅燈,是隨機事件,該選項不合題意;C、打開電視,正在播放《大國工匠》,是隨機事件,該選項不合題意;D、拋擲一枚硬幣,正面向上,是隨機事件,該選項不合題意;故選:A.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、D【分析】根據(jù)概率的意義分別判斷后即可確定正確的選項.【詳解】解:A.必然事件發(fā)生的概率是1,故該選項正確,不符合題意;B.不可能事件發(fā)生的概率是0,故該選項正確,不符合題意;C.隨機事件發(fā)生的可能性越大,它的概率就越接近1,故該選項正確,不符合題意;D.概率很小的事件也可能發(fā)生,故該選項不正確,符合題意;故選D【點睛】本題考查概率的意義,理解概率的意義反映的只是這一事件發(fā)生的可能性的大小:必然發(fā)生的事件發(fā)生的概率為1,隨機事件發(fā)生的概率大于0且小于1,不可能事件發(fā)生的概率為0.8、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關鍵.二、填空題1、以點為圓心,8厘米長為半徑的圓【分析】由題意直接根據(jù)圓的定義進行分析即可解答.【詳解】到點的距離等于8厘米的點的軌跡是:以點為圓心,2厘米長為半徑的圓.故答案為:以點為圓心,8厘米長為半徑的圓.【點睛】本題主要考查了圓的定義,正確理解定義是關鍵,注意掌握圓的定義是在同一平面內(nèi)到定點的距離等于定長的點的集合.2、在⊙A上【分析】先根據(jù)兩點間的距離公式計算出OA,然后根據(jù)點與圓的位置關系的判定方法判斷點O與⊙A的位置關系.【詳解】解:∵點A的坐標為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點O在⊙A上.故答案為:在⊙A上.【點睛】本題考查了點與圓的位置關系:點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,當點P在圓外?d>r;當點P在圓上?d=r;當點P在圓內(nèi)?d<r.3、【分析】直接利用概率公式進行計算即可.【詳解】解:過年時包了100個餃子,有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是故答案為:【點睛】本題考查的是簡單隨機事件的概率,熟練的利用概率公式進行計算是解本題的關鍵;概率的含義:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.4、2【分析】根據(jù)扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.5、【分析】根據(jù)圓心角為的扇形面積是進行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點睛】本題考查了扇形的面積,解題的關鍵是掌握扇形的面積公式.6、【分析】如圖,取的中點,連接,,,證明,進而證明在上運動,且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識轉化線段是解題的關鍵.7、【分析】如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關鍵.三、解答題1、(1)A(-1,0),B(0,2);(2)點C的坐標(,);(3)①求點F的坐標(1,2);②點P的坐標(,)【分析】(1)令x=0,求得y值,得點B的坐標;令y=0,求得x的值,取較小的一個即求A點的坐標;(2)設C的坐標為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據(jù)旋轉性質(zhì),得EF=BO=2,從而確定點F的坐標;②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標.【詳解】(1)令x=0,得y=2,∴點B的坐標為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負半軸;∴A點的坐標(-1,0);(2)設C的坐標為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側的拋物線上,∴,此時y=,∴點C的坐標(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點,∴點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點F的坐標為(1,2);②如圖,設拋物線的對稱軸與BE交于點M,交x軸與點N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點P的坐標為(,).【點睛】本題考查了拋物線與坐標軸的交點,旋轉的性質(zhì),兩點間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的對稱性,靈活理解旋轉的意義,熟練解一元二次方程是解題的關鍵.2、(1)見解析;(2)3【分析】(1)根據(jù)∠D=∠B,∠BCO=∠B,代換證明;(2)根據(jù)垂徑定理,得CE=,,利用勾股定理計算即可.【詳解】(1)證明:∵OC=OB,∴∠BCO=∠B;∵,∴∠B=∠D;∴∠BCO=∠D;(2)解:∵AB是⊙O的直徑,且CD⊥AB于點E,∴CE=CD,∵CD=,∴CE=,在Rt△OCE中,,∵OE=1,∴,∴;∴⊙O的半徑為3.【點睛】本題考查了圓周角定理,垂徑定理,勾股定理,結合圖形,熟練運用三個定理是解題的關鍵.3、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圓O的半徑,∴CD是⊙O的切線.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO為等邊三角形,∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,設△OED的高為h,∴,∴,∴.【點睛】本題主要考查扇形面積公式、切線的判定定理及解直角三角形,熟練掌握扇形面積公式、切線的判定定理及解直角三角形是解題的關鍵.4、見解析【分析】根據(jù)幾何體的三視圖畫法作圖.【詳解】解:如圖,.【點睛】此題考查了畫小正方體組成的幾何體的三視圖,正確掌握幾何體的三視圖的畫圖方法是解題的關鍵.5、(1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【分析】(1)根據(jù)坐標的定義,判定即可;(2)根據(jù)原點對稱,y軸對稱的點的坐標特點計算即可;(3)把四邊形的面積分割成三角形的面積計算;(4)根據(jù)面積相等,確定OF的長,從而確定坐標.(1)過點B作x軸的垂線,垂足所對應的數(shù)為﹣3,因此點B的橫坐標為﹣3,過點B作y軸的垂線,垂足所對應的數(shù)為4,因此點B的縱坐標為4,所以點B(﹣3,4);故答案為:(﹣3,4);(2)由于關于原點對稱的兩個點坐標縱橫坐標均為互為相反數(shù),所以點B(﹣3,4)關于原點對稱點C(3,﹣4),由于關于y軸對稱的兩個點,其橫坐標互為相反數(shù),其縱坐標不變,所以點A(﹣2,0)關于y軸對稱點D(2,0),故答案為:(3,﹣4),(2,0);(3)=2××4×4=16,故答案為:16;(4)∵==8=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- CCAA - 2019年11月環(huán)境管理體系基礎答案及解析 - 詳解版(80題)
- 河南省鄭州七中2025-2026學年上學期八年級期末語文試題(無答案)
- 養(yǎng)老院老人健康監(jiān)測人員激勵制度
- 企業(yè)員工培訓與素質(zhì)發(fā)展計劃目標制度
- 人教版(2024)七年級上冊英語期末復習:作文 專項練習題匯編(含答案+范文)
- 老年終末期認知障礙用藥安全管理策略
- 老年終末期患者共病管理的藥物相互作用個體化監(jiān)測方案
- 電子商務交易安全防護措施指南
- 老年終末期壓瘡護理與認知障礙患者適配策略
- 秦皇島撫寧法院書記員招聘考試真題庫2025
- 供水管道搶修知識培訓課件
- 廣東物業(yè)管理辦法
- 業(yè)務規(guī)劃方案(3篇)
- 大客戶開發(fā)與管理課件
- 上海物業(yè)消防改造方案
- 供應商信息安全管理制度
- 2025年農(nóng)業(yè)機械化智能化技術在農(nóng)業(yè)防災減災中的應用報告
- 發(fā)展與安全統(tǒng)籌策略研究
- 移動式壓力容器安全技術監(jiān)察規(guī)程(TSG R0005-2011)
- 綠化工程監(jiān)理例會會議紀要范文
- 高速液壓夯實地基技術規(guī)程
評論
0/150
提交評論