考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(考點(diǎn)梳理)_第1頁(yè)
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(考點(diǎn)梳理)_第2頁(yè)
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(考點(diǎn)梳理)_第3頁(yè)
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(考點(diǎn)梳理)_第4頁(yè)
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(考點(diǎn)梳理)_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下列事件為必然事件的是()A.明天要下雨B.a(chǎn)是實(shí)數(shù),|a|≥0C.﹣3<﹣4D.打開(kāi)電視機(jī),正在播放新聞2、如圖,,,,都是上的點(diǎn),,垂足為,若,則的度數(shù)為()A. B. C. D.3、在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),則的值為()A.4 B.-4 C.-2 D.24、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°5、如圖,在矩形ABCD中,點(diǎn)E在CD邊上,連接AE,將沿AE翻折,使點(diǎn)D落在BC邊的點(diǎn)F處,連接AF,在AF上取點(diǎn)O,以O(shè)為圓心,線(xiàn)段OF的長(zhǎng)為半徑作⊙O,⊙O與AB,AE分別相切于點(diǎn)G,H,連接FG,GH.則下列結(jié)論錯(cuò)誤的是()A. B.四邊形EFGH是菱形C. D.6、如圖,在中,,,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到,此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在BC邊上,則CD的長(zhǎng)為()A.1 B.2 C.3 D.47、如圖,在Rt△ABC中,,,點(diǎn)D、E分別是AB、AC的中點(diǎn).將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,射線(xiàn)BD與射線(xiàn)CE交于點(diǎn)P,在這個(gè)旋轉(zhuǎn)過(guò)程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④8、一個(gè)不透明的盒子里裝有a個(gè)除顏色外完全相同的球,其中有6個(gè)白球,每次將球充分?jǐn)噭蚝?,任意摸?個(gè)球記下顏色然后再放回盒子里,通過(guò)如此大量重復(fù)試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.18第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、在一個(gè)不透明的袋子里,有2個(gè)白球和2個(gè)紅球,它們只有顏色上的區(qū)別,從袋子里隨機(jī)摸出兩個(gè)球,則摸到兩個(gè)都是紅球的概率是_______.2、如圖,PA是⊙O的切線(xiàn),A是切點(diǎn).若∠APO=25°,則∠AOP=___________°.3、點(diǎn)(2,-3)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為_(kāi)____.4、一個(gè)五邊形共有__________條對(duì)角線(xiàn).5、將點(diǎn)繞x軸上的點(diǎn)G順時(shí)針旋轉(zhuǎn)90°后得到點(diǎn),當(dāng)點(diǎn)恰好落在以坐標(biāo)原點(diǎn)O為圓心,2為半徑的圓上時(shí),點(diǎn)G的坐標(biāo)為_(kāi)_______.6、一個(gè)不透明的袋子裝有除顏色外其余均相同的2個(gè)紅球和m個(gè)黃球,隨機(jī)從袋中摸出個(gè)球記錄下顏色,再放回袋中搖勻大量重復(fù)試驗(yàn)后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,則m的值為_(kāi)________.7、如圖,在平面直角坐標(biāo)系xOy中,P為x軸正半軸上一點(diǎn).已知點(diǎn),,為的外接圓.(1)點(diǎn)M的縱坐標(biāo)為_(kāi)_____;(2)當(dāng)最大時(shí),點(diǎn)P的坐標(biāo)為_(kāi)_____.三、解答題(7小題,每小題0分,共計(jì)0分)1、在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為、、(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).(1)將向下平移4個(gè)單位長(zhǎng)度得到的,則點(diǎn)的坐標(biāo)是____________;(2)以點(diǎn)B為位似中心,在網(wǎng)格上畫(huà)出,使與位似,且位似比為2:1,求點(diǎn)的坐標(biāo);(3)若是外接圓,求的半徑.2、如圖1,在中,,,點(diǎn)D為AB邊上一點(diǎn).(1)若,則______;(2)如圖2,將線(xiàn)段CD繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段CE,連接AE,求證:;(3)如圖3,過(guò)點(diǎn)A作直線(xiàn)CD的垂線(xiàn)AF,垂足為F,連接BF.直接寫(xiě)出BF的最小值.3、已知,P是直線(xiàn)AB上一動(dòng)點(diǎn)(不與A,B重合),以P為直角頂點(diǎn)作等腰直角三角形PBD,點(diǎn)E是直線(xiàn)AD與△PBD的外接圓除點(diǎn)D以外的另一個(gè)交點(diǎn),直線(xiàn)BE與直線(xiàn)PD相交于點(diǎn)F.(1)如圖,當(dāng)點(diǎn)P在線(xiàn)段AB上運(yùn)動(dòng)時(shí),若∠DBE=30°,PB=2,求DE的長(zhǎng);(2)當(dāng)點(diǎn)P在射線(xiàn)AB上運(yùn)動(dòng)時(shí),試探求線(xiàn)段AB,PB,PF之間的數(shù)量關(guān)系,并給出證明.4、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長(zhǎng);(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.5、如圖,在中,AB是直徑,弦EF∥AB.(1)請(qǐng)僅用無(wú)刻度的直尺畫(huà)出劣弧EF的中點(diǎn)P;(保留作圖痕跡,不寫(xiě)作法)(2)在(1)的條件下,連接OP交EF于點(diǎn)Q,,,求PQ的長(zhǎng)度.6、在平面內(nèi),給定不在同一直線(xiàn)上的點(diǎn)A,B,C,如圖所示.點(diǎn)O到點(diǎn)A,B,C的距離均等于r(r為常數(shù)),到點(diǎn)O的距離等于r的所有點(diǎn)組成圖形G,ABC的平分線(xiàn)交圖形G于點(diǎn)D,連接AD,CD.求證:AD=CD.7、在太原市創(chuàng)建國(guó)家文明城市的過(guò)程中,東東和南南積極參加志愿者活動(dòng),有下列三個(gè)志愿者工作崗位供他們選擇:(每個(gè)工作崗位僅能讓一個(gè)人工作)①2個(gè)清理類(lèi)崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用,表示);②1個(gè)宣傳類(lèi)崗位:垃圾分類(lèi)知識(shí)宣傳(用表示).(1)東東從三個(gè)崗位中隨機(jī)選取一個(gè)報(bào)名,恰好選擇清理類(lèi)崗位的概率為_(kāi)_______.(2)若東東和南南各隨機(jī)從三個(gè)崗位中選取一個(gè)報(bào)名,請(qǐng)你利用畫(huà)樹(shù)狀圖法或列表法求出他們恰好都選擇同一類(lèi)崗位的概率.-參考答案-一、單選題1、B【分析】根據(jù)事情發(fā)生的可能性大小進(jìn)行判斷,必然事件和不可能事件統(tǒng)稱(chēng)確定性事件;必然事件:在一定條件下,一定會(huì)發(fā)生的事件稱(chēng)為必然事件;不可能事件:在一定條件下,一定不會(huì)發(fā)生的事件稱(chēng)為不可能事件;隨機(jī)事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱(chēng)為隨機(jī)事件.【詳解】A.明天要下雨,是隨機(jī)事件,不符合題意;B.a是實(shí)數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開(kāi)電視機(jī),正在播放新聞,是隨機(jī)事件,不符合題意故選B【點(diǎn)睛】本題考查了必然事件,隨機(jī)事件,不可能事件,實(shí)數(shù)的性質(zhì),有理數(shù)大小比較,掌握相關(guān)知識(shí)是解題的關(guān)鍵.2、B【分析】連接OC.根據(jù)確定,,進(jìn)而計(jì)算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對(duì)的圓周角和圓心角,∴.故選:B.【點(diǎn)睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應(yīng)用這些知識(shí)點(diǎn)是解題關(guān)鍵.3、C【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn):兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)時(shí),它們的坐標(biāo)符號(hào)相反即可得到答案.【詳解】解:點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),,,.故選:C.【點(diǎn)睛】此題主要考查了原點(diǎn)對(duì)稱(chēng)點(diǎn)的坐標(biāo)特點(diǎn),解題的關(guān)鍵是掌握點(diǎn)的變化規(guī)律.4、D【分析】將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形,解題的關(guān)鍵是掌握旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.5、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線(xiàn)長(zhǎng)定理得到AG=AH,∠GAF=∠HAF,進(jìn)而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對(duì)A作出判斷;接下來(lái)延長(zhǎng)EF與AB交于點(diǎn)N,得到EF是⊙O的切線(xiàn),ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結(jié)合HE=EF可對(duì)B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結(jié)合AD=DE對(duì)C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線(xiàn),點(diǎn)G、H分別是切點(diǎn),∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長(zhǎng)EF與AB交于點(diǎn)N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線(xiàn),∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯(cuò)誤,符合題意.故選C.【點(diǎn)睛】本題是一道幾何綜合題,考查了切線(xiàn)長(zhǎng)定理及推論,切線(xiàn)的判定,菱形的定義,含30的直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),翻折變換等,正確理解翻折變換及添加輔助線(xiàn)是解決本題的關(guān)鍵.6、B【分析】由題意以及旋轉(zhuǎn)的性質(zhì)可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉(zhuǎn)的性質(zhì)知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點(diǎn)睛】本題考查了等邊三角形的判定及性質(zhì),等邊三角形的三邊都相等,三個(gè)內(nèi)角都相等,并且每一個(gè)內(nèi)角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個(gè)內(nèi)角都相等的三角形是等邊三角形;有一個(gè)內(nèi)角是60度的等腰三角形是等邊三角形;兩個(gè)內(nèi)角為60度的三角形是等邊三角形.7、B【分析】根據(jù),,點(diǎn)D、E分別是AB、AC的中點(diǎn).得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線(xiàn)時(shí),CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線(xiàn),證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,L可判斷④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確即可.【詳解】解:∵,,點(diǎn)D、E分別是AB、AC的中點(diǎn).∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線(xiàn)時(shí),CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線(xiàn),∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確;正確的是①②④.故選B.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線(xiàn)段中點(diǎn)定義,三角形全等判定與性質(zhì),圓的切線(xiàn),正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長(zhǎng)公式,本題難度大,利用輔助線(xiàn)最長(zhǎng)準(zhǔn)確圖形是解題關(guān)鍵.8、C【分析】在同樣條件下,大量反復(fù)試驗(yàn)時(shí),隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關(guān)系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗(yàn),a=15是原方程的解故選:C.【點(diǎn)睛】本題利用了用大量試驗(yàn)得到的頻率可以估計(jì)事件的概率.關(guān)鍵是根據(jù)白球的頻率得到相應(yīng)的等量關(guān)系.二、填空題1、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個(gè)都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球?yàn)椋浊驗(yàn)?,列表得:∵一共?2種情況,摸到兩個(gè)都是紅球有2種,∴P(兩個(gè)球都是紅球),故答案是.【點(diǎn)睛】本題主要考查了用列表法或畫(huà)樹(shù)狀圖法求概率,列表法或畫(huà)樹(shù)狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.2、65【分析】根據(jù)切線(xiàn)的性質(zhì)得到OA⊥AP,根據(jù)直角三角形的兩銳角互余計(jì)算,得到答案.【詳解】解:∵PA是⊙O的切線(xiàn),∴OA⊥AP,∴,∵∠APO=25°,∴,故答案為:65.【點(diǎn)睛】本題考查的是切線(xiàn)的性質(zhì)、直角三角形的性質(zhì),掌握?qǐng)A的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.3、(-2,3)【分析】根據(jù)“關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)關(guān)系,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”,即可求解.【詳解】點(diǎn)(2,-3)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(-2,3).故答案為:

(-2,3).【點(diǎn)睛】本題主要考查點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),解決本題的關(guān)鍵是要熟練掌握關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn)的坐標(biāo)的關(guān)系.4、5【分析】由n邊形的對(duì)角線(xiàn)有:條,再把代入計(jì)算即可得.【詳解】解:邊形共有條對(duì)角線(xiàn),五邊形共有條對(duì)角線(xiàn).故答案為:5【點(diǎn)睛】本題考查的是多邊形的對(duì)角線(xiàn)的條數(shù),掌握n邊形的對(duì)角線(xiàn)的條數(shù)是解題的關(guān)鍵.5、或【分析】設(shè)點(diǎn)G的坐標(biāo)為,過(guò)點(diǎn)A作軸交于點(diǎn)M,過(guò)點(diǎn)作軸交于點(diǎn)N,由全等三角形求出點(diǎn)坐標(biāo),由點(diǎn)在2為半徑的圓上,根據(jù)勾股定理即可求出點(diǎn)G的坐標(biāo).【詳解】設(shè)點(diǎn)G的坐標(biāo)為,過(guò)點(diǎn)A作軸交于點(diǎn)M,過(guò)點(diǎn)作軸交于點(diǎn)N,如圖所示:∵,∴,,∵點(diǎn)A繞點(diǎn)G順時(shí)針旋轉(zhuǎn)90°后得到點(diǎn),∴,,∴,∵軸,軸,∴,∴,∴,在與中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案為:,.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理,掌握相關(guān)知識(shí)之間的應(yīng)用是解題的關(guān)鍵.6、8【分析】首先根據(jù)題意可取確定摸出紅球的概率為0.2,然后根據(jù)概率公式建立方程求解即可.【詳解】解:∵大量重復(fù)試驗(yàn)后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,∴摸出紅球的概率為0.2,由題意,,解得:,經(jīng)檢驗(yàn),是原方程的解,且符合題意,故答案為:8.【點(diǎn)睛】本題考查由頻率估計(jì)概率,以及已知概率求數(shù)量;大量重復(fù)試驗(yàn)后,某種情況出現(xiàn)的頻率穩(wěn)定在某個(gè)值附近時(shí),這個(gè)值即為該事件發(fā)生的概率,掌握概率公式是解題關(guān)鍵.7、5(4,0)【分析】(1)根據(jù)點(diǎn)M在線(xiàn)段AB的垂直平分線(xiàn)上求解即可;(2)點(diǎn)P在⊙M切點(diǎn)處時(shí),最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點(diǎn)M在線(xiàn)段AB的垂直平分線(xiàn)上,∵A(0,2),B(0,8),∴點(diǎn)M的縱坐標(biāo)為:,故答案為:5;(2)過(guò)點(diǎn),,作⊙M與x軸相切,則點(diǎn)M在切點(diǎn)處時(shí),最大,理由:若點(diǎn)是x軸正半軸上異于切點(diǎn)P的任意一點(diǎn),設(shè)交⊙M于點(diǎn)E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點(diǎn)P在切點(diǎn)處時(shí),∠APB最大,∵⊙M經(jīng)過(guò)點(diǎn)A(0,2)、B(0,8),∴點(diǎn)M在線(xiàn)段AB的垂直平分線(xiàn)上,即點(diǎn)M在直線(xiàn)y=5上,∵⊙M與x軸相切于點(diǎn)P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設(shè)AB的中點(diǎn)為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點(diǎn)P的坐標(biāo)為(4,0),故答案為:(4,0).【點(diǎn)睛】本題考查了切線(xiàn)的性質(zhì),線(xiàn)段垂直平分線(xiàn)的性質(zhì),矩形的判定及勾股定理,正確作出圖形是解題的關(guān)鍵.三、解答題1、(1)(2,-2)(2)圖見(jiàn)解析,(1,0)(3)【分析】(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點(diǎn)的坐標(biāo);(2)根據(jù)位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置,從而得到點(diǎn)的坐標(biāo);(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計(jì)算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設(shè)其半徑為R;則【點(diǎn)睛】本題考查作圖—平移變換,作圖—位似變換、三角形外接圓,正確理解位似變換的定義,會(huì)進(jìn)行位似變換的作圖是解題的關(guān)鍵.2、(1)5(2)證明見(jiàn)解析(3)【分析】(1)過(guò)C作CM⊥AB于M,根據(jù)等腰三角形的性質(zhì)求出CM和DM,再根據(jù)勾股定理計(jì)算即可;(2)連BE,先證明,即可得到直角三角形ABE,利用勾股定理證明即可;(3)取AC中點(diǎn)N,連接FN、BN,根據(jù)三角形BFN中三邊關(guān)系判斷即可.(1)過(guò)C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)連接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中點(diǎn)N,連接FN、BN,∵,,∴∵AF垂直CD∴∵AC中點(diǎn)N,∴∴∵三角形BFN中∴∴當(dāng)B、F、N三點(diǎn)共線(xiàn)時(shí)BF最小,最小值為.【點(diǎn)睛】本題考查等腰直角三角形的常用輔助線(xiàn)以及直角三角形斜邊上的中線(xiàn),解題的關(guān)鍵是根據(jù)等腰直角三角形作斜邊垂線(xiàn)或者構(gòu)造“手拉手模型”.3、(1)(2)PF=AB-PB或PF=AB+PB,理由見(jiàn)解析【分析】(1)根據(jù)△PBD等腰直角三角形,PB=2,求出DB的長(zhǎng),由⊙O是△PBD的外接圓,∠DBE=30°,可得答案;(2)根據(jù)同弧所對(duì)的圓周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可證△APD≌△FPB,可得答案.【詳解】解:(1)由題意畫(huà)以下圖,連接EP,∵△PBD等腰直角三角形,⊙O是△PBD的外接圓,∴∠DPB=∠DEB=90°,∵PB=2,∴,∵∠DBE=30°,∴(2)①點(diǎn)P在點(diǎn)A、B之間,由(1)的圖根據(jù)同弧所對(duì)的圓周角相等,可得:∠ADP=∠FBP,又∵△PBD等腰直角三角形,∴∠DPB=∠APD=90°,DP=BP,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∵AP+PB=AB∴FP+PB=AB,∴FP=AB-PB,②點(diǎn)P在點(diǎn)B的右側(cè),如下圖:∵△PBD等腰直角三角形,∴∠DPB=∠APF=90°,DP=BP,∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,∴∠PBF=∠PDA,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∴AB+PB=AP,∴AB+PB=PF,∴PF=AB+PB.綜上所述,F(xiàn)P=AB-PB或PF=AB+PB.【點(diǎn)睛】本題考查了圓的性質(zhì),等腰直角三角形,三角形全等的判定,做題的關(guān)鍵是注意(2)的兩種情況.4、(1);(2)證明見(jiàn)詳解;(3).【分析】(1)過(guò)點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線(xiàn)上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線(xiàn)上時(shí),作∠ABC的平分線(xiàn)交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線(xiàn),根據(jù)兩點(diǎn)之交線(xiàn)段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線(xiàn),根據(jù)兩點(diǎn)之間線(xiàn)段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過(guò)點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線(xiàn)上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線(xiàn)上時(shí),作∠ABC的平分線(xiàn)交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線(xiàn),∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線(xiàn),OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論