強化訓練-黑龍江省肇東市中考數(shù)學真題分類(勾股定理)匯編專題測評試卷(含答案詳解版)_第1頁
強化訓練-黑龍江省肇東市中考數(shù)學真題分類(勾股定理)匯編專題測評試卷(含答案詳解版)_第2頁
強化訓練-黑龍江省肇東市中考數(shù)學真題分類(勾股定理)匯編專題測評試卷(含答案詳解版)_第3頁
強化訓練-黑龍江省肇東市中考數(shù)學真題分類(勾股定理)匯編專題測評試卷(含答案詳解版)_第4頁
強化訓練-黑龍江省肇東市中考數(shù)學真題分類(勾股定理)匯編專題測評試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省肇東市中考數(shù)學真題分類(勾股定理)匯編專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,2、如圖,長方形中,,,將此長方形折疊,使點與點重合,折痕為,則的長為(

)A.12 B.8 C.10 D.133、如圖,桌上有一個圓柱形玻璃杯(無蓋)高6厘米,底面周長16厘米,在杯口內(nèi)壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(

)A.厘米 B.10厘米 C.厘米 D.8厘米4、有一個邊長為1的正方形,以它的一條邊為斜邊,向外作一個直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個正方形,稱為第一次“生長”(如圖1);再分別以這兩個正方形的邊為斜邊,向外各自作一個直角三角形,然后分別以這兩個直角三角形的直角邊為邊,向外各作一個正方形,稱為第二次“生長”(如圖2)……如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2021次后形成的圖形中所有的正方形的面積和是(

)A.1 B.2020 C.2021 D.20225、在中,,,,的對邊分別是a,b,c,若,,則的面積是(

)A. B. C. D.6、如圖,正方形的邊長為10,,,連接,則線段的長為(

)A. B. C. D.7、如圖,以Rt△ABC的兩直角邊為邊向外作正方形,其面積分別為S1,S2,若S1=8cm2,S2=17cm2,則斜邊AB的長是(

)A.3cm B.6cm C.4cm D.5cm第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.2、把兩個同樣大小含角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個三角尺的直角頂點重合于點,且另外三個銳角頂點在同一直線上.若,則____.3、如圖,在正方形網(wǎng)格中,點A,B,C,D,E是格點,則∠ABD+∠CBE的度數(shù)為_____________.

4、等腰△ABC中,AB=AC=10cm,BC=12cm,則BC邊上的高是_______cm.5、如圖,已知中,,,動點M滿足,將線段繞點C順時針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.6、附加題:觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請你寫出有以上規(guī)律的第⑤組勾股數(shù):________.7、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為17米,幾分鐘后船到達點D的位置,此時繩子CD的長為10米,問船向岸邊移動了__米.8、如圖,鐵路MN和公路PQ在O點處交匯,公路PQ上A處點距離O點240米,距離MN120米,如果火車行駛時,周圍兩百米以內(nèi)會受到噪音的影響,那么火車在鐵路MN上沿ON方向,以144千米/時的速度行駛時,A處受噪音影響的時間是_______s三、解答題(7小題,每小題10分,共計70分)1、已知:在中,點在直線上,點在同一條直線上,且,【問題初探】(1)如圖1,若平分,求證:.請依據(jù)以下的簡易思維框圖,寫出完整的證明過程.【變式再探】(2)如圖2,若平分的外角,交的延長線于點,問:和的數(shù)量關(guān)系發(fā)生改變了嗎?若改變,請寫出正確的結(jié)論,并證明;若不改變,請說明理由.【拓展運用】(3)如圖3,在的條件下.若,求的長度.2、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為ts.(1)出發(fā)3s后,求PQ的長;(2)當點Q在邊BC上運動時,出發(fā)多久后,△PQB能形成等腰三角形?(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.3、拖拉機行駛過程中會對周圍產(chǎn)生較大的噪聲影響.如圖,有一臺拖拉機沿公路AB由點A向點B行駛,已知點C為一所學校,且點C與直線AB上兩點A,B的距離分別為150m和200m,又AB=250m,拖拉機周圍130m以內(nèi)為受噪聲影響區(qū)域.(1)學校C會受噪聲影響嗎?為什么?(2)若拖拉機的行駛速度為每分鐘50米,拖拉機噪聲影響該學校持續(xù)的時間有多少分鐘?4、數(shù)學中,常對同一個量(圖形的面積、點的個數(shù)等)用兩種不同的方法計算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖2的方式拼成一個正方形.①用“算兩次”的方法計算圖2中陰影部分的面積:第一次列式為,第二次列式為,因為兩次所列算式表示的是同一個圖形的面積,所以可以得出等式;②在①中,如果,,請直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個邊長分別為,,的直角三角形和一個兩條直角邊都是的直角三角形拼成一個梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.5、如圖所示的一塊地,,,,,,求這塊地的面積.6、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時,它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?7、在邊長為8的等邊ABC中,點D是邊AB上的一動點,點E在邊AC上,且CE=2AD,射線DE繞點D順時針旋轉(zhuǎn)60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數(shù);②取邊BC的中點M,當PM取最小值時,求AD的長.-參考答案-一、單選題1、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項符合題意;B、42+52≠62,不是勾股數(shù),故此選項不合題意;C、22+32≠42,不是勾股數(shù),故此選項不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項不合題意;故選:A.【考點】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).2、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進而可以求解.3、B【解析】【分析】把圓柱沿著點A所在母線展開,把圓柱上最短距離轉(zhuǎn)化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點A所在母線展開,如圖所示,作點A的對稱點B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉(zhuǎn)化為將軍飲馬河問題,靈活使用勾股定理是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)題意可得每“生長”一次,面積和增加1,據(jù)此即可求得“生長”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長”了2次后形成的圖形中所有的正方形面積和為3,“生長”了3次后形成的圖形中所有正方形的面積和為4,……“生長”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點】本題考查了勾股數(shù)規(guī)律問題,找到規(guī)律是解題的關(guān)鍵.5、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.6、B【解析】【分析】延長DH交AG于點E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.7、D【解析】【分析】根據(jù)正方形的面積可以得到BC2=8,AC2=17,然后根據(jù)勾股定理即可得到AB2,從而可以求得AB的值.【詳解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故選:D.【考點】本題考查正方形的面積、勾股定理,解答本題的關(guān)鍵是明確正方形的面積是邊長的平方.二、填空題1、8【解析】【分析】作交的延長于點,在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長于點,則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.2、.【解析】【分析】如圖,先利用等腰直角三角形的性質(zhì)求出,,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點作于,在中,,,,兩個同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.3、45°【解析】【分析】取網(wǎng)格點M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識,求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.4、8【解析】【詳解】如圖,AD是BC邊上的高線.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案為8.5、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當點N落在線段AB上時,最小,求出最小值即可.【詳解】解:∵線段繞點C順時針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.6、11,60,61【解析】【分析】由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設(shè)第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,計算求解即可.【詳解】解:由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,∴知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設(shè)第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,解得x=60,∴第5組數(shù)是:11、60、61故答案為:11、60、61.【考點】本題考查了數(shù)字類規(guī)律,勾股定理等知識.解題的關(guān)鍵在于推導(dǎo)規(guī)律.7、9.【解析】【分析】在Rt△ABC中,利用勾股定理計算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動了9米,故答案為:9.【考點】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.8、8【解析】【分析】過點A作AC⊥ON,根據(jù)題意可知AC的長與200米相比較,發(fā)現(xiàn)受到影響,然后過點A作AD=AB=200米,求出BD的長即可得出居民樓受噪音影響的時間.【詳解】解:如圖:過點A作AC⊥ON,AB=AD=200米,∵公路PQ上A處點距離O點240米,距離MN120米,∴AC=120米,當火車到B點時對A處產(chǎn)生噪音影響,此時AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小時=40米/秒,∴影響時間應(yīng)是:320÷40=8秒.故答案為:8.【考點】本題考查勾股定理的應(yīng)用.根據(jù)題意構(gòu)建直角三角形是解題關(guān)鍵.三、解答題1、(1)見解析

(2);理由見解析

(3)【解析】【分析】(1)根據(jù)ASA證明得BE=BC,得,進一步可得結(jié)論;(2)根據(jù)ASA證明得BE=BC,得;(3)連結(jié),分別求出∠AEB=∠ADE=∠ACB=22.5°,再證明AE=CD,∠ADC=90°,由勾股定理可得AC,由EC=EA+AC可得結(jié)論.【詳解】解:(1)證明平分,在和中,,;.理由:平分,在和中,,.連結(jié),,,,且,由得,,,.【考點】此題主要考查了全等三角形的判定與性質(zhì),勾股定理等知識,連接AD是解答此題的關(guān)鍵.2、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結(jié)論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質(zhì)可得到BP=BQ,可得到關(guān)于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質(zhì)可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關(guān)于t的方程,可求得t的值.(1)當t=3時,則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由題意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,當△PQB為等腰三角形時,則有BP=BQ,即16﹣t=2t,解得t=,∴出發(fā)秒后△PQB能形成等腰三角形;(3)①當CQ=BQ時,如圖1所示,則∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②當CQ=BC時,如圖2所示,則BC+CQ=24,∴t=24÷2=12秒.③當BC=BQ時,如圖3所示,過B點作BE⊥AC于點E,則BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.綜上所述:當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【考點】本題考查了勾股定理、等腰三角形的性質(zhì)、方程思想及分類討論思想等知識.用時間t表示出相應(yīng)線段的長,化“動”為“靜”是解決這類問題的一般思路,注意方程思想的應(yīng)用.3、(1)會受噪聲影響,理由見解析;(2)有2分鐘;【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,進而得出學校C是否會受噪聲影響;(2)利用勾股定理得出ED以及EF的長,進而得出拖拉機噪聲影響該學校持續(xù)的時間.【詳解】解:(1)學校C會受噪聲影響.理由:如圖,過點C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉機周圍130m以內(nèi)為受噪聲影響區(qū)域,∴學校C會受噪聲影響.(2)當EC=130m,F(xiàn)C=130m時,正好影響C學校,∵ED==50(m),∴EF=50×2=100(m),∵拖拉機的行駛速度為每分鐘50米,∴100÷50=2(分鐘),即拖拉機噪聲影響該學校持續(xù)的時間有2分鐘.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.4、(1)①,,;或,,;②9;(2)【解析】【分析】(1)①第一次求解陰影部分的邊長,再計算面積,第二次利用大的正方形的面積減去四個長方形的面積,從而可建立等式;②直接利用公式,再整體代入求值即可;(2)第一次利用梯形的面積公式計算,第二次利用圖形的面積和計算,從而得到公式,再整理即可得到答案.【詳解】解:(1)因為小正方形的邊長為:所以第一次計算的面積為:,第二次計算的面積為:,所以:;或,,②∵,∴(3)第一次利用梯形的面積公式圖形面積為:第二次利用圖形的面積和計算為:整理得:【考點】本題考查的是利用幾何圖形的面積推導(dǎo)代數(shù)公式,掌握等面積法推導(dǎo)兩個完全平方公式之間的關(guān)系,推導(dǎo)勾股定理是解題的關(guān)鍵.5、384【解析】【分析】連接,勾股定理求得,勾股定理的逆定理證明為直角三角形,進而根據(jù)三角形的面積公式計算和的面積之差即可.【詳解】解:連接,在直角中,,,由,解得,在中,,,,∵,∴,∴為直角三角形,要求這塊地的面積,求和的面積之差即可,,答:這塊地的面積為.【考點】本題考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.6、它至少5.2秒能趕回巢中.【解析】【分析】過點作于點.求出AF,EF,再根據(jù)勾股定理求出AE,從而求出時間.【詳解】解:如圖所示,米,米,米,米.過點作于點.在中,米,米,所以.所以喜鵲離巢的距離米.喜鵲趕回巢所需的時間為(秒).即它至少5.2秒能趕回巢中.【考點】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論