強(qiáng)化訓(xùn)練廣東廣州市廣大附中7年級數(shù)學(xué)下冊第四章三角形同步測評練習(xí)題(解析版)_第1頁
強(qiáng)化訓(xùn)練廣東廣州市廣大附中7年級數(shù)學(xué)下冊第四章三角形同步測評練習(xí)題(解析版)_第2頁
強(qiáng)化訓(xùn)練廣東廣州市廣大附中7年級數(shù)學(xué)下冊第四章三角形同步測評練習(xí)題(解析版)_第3頁
強(qiáng)化訓(xùn)練廣東廣州市廣大附中7年級數(shù)學(xué)下冊第四章三角形同步測評練習(xí)題(解析版)_第4頁
強(qiáng)化訓(xùn)練廣東廣州市廣大附中7年級數(shù)學(xué)下冊第四章三角形同步測評練習(xí)題(解析版)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東廣州市廣大附中7年級數(shù)學(xué)下冊第四章三角形同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點D,則ADC的面積是()A.8 B.10 C.9 D.162、一個三角形的兩邊長分別為5和2,若該三角形的第三邊的長為偶數(shù),則該三角形的第三邊的長為()A.6 B.8 C.6或8 D.4或63、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個仍無法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE4、如果一個三角形的兩邊長分別為5cm和8cm,則第三邊長可能是()A.2cm B.3cm C.12cm D.13cm5、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,6、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④7、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點作位置不同的格點的三角形與△ABC全等,這樣格點三角形最多可以畫出()A.2個 B.3個 C.4個 D.5個8、如圖,,,,則下列結(jié)論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④9、如圖,點A在DE上,點F在AB上,△ABC≌△EDC,若∠ACE=50°,則∠DAB=()A.40° B.45° C.50° D.55°10、已知三角形的兩邊長分別為2cm和3cm,則第三邊長可能是()A.6cm B.5cm C.3cm D.1cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).2、如圖,∠ABD=80°,∠C=38°,則∠D=___度.3、已知:如圖,AB=DB.只需添加一個條件即可證明.這個條件可以是______.(寫出一個即可).4、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.5、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.6、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時,則△CEF的周長為_____.7、如圖,A、F、C、D在同一條直線上,△ABC≌△DEF,AF=1,F(xiàn)D=3.則線段FC的長為_____.8、已知三角形的三邊分別為n,5,7,則n的范圍是_____.9、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.10、如圖,已知,,,則______°.三、解答題(6小題,每小題10分,共計60分)1、如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點為射線CB上一動點,連結(jié)AE,作AF⊥AE且AF=AE.(1)如圖1,過F點作FD⊥AC交AC于D點,求證:FD=BC;(2)如圖2,連結(jié)BF交AC于G點,若AG=3,CG=1,求證:E點為BC中點.(3)當(dāng)E點在射線CB上,連結(jié)BF與直線AC交子G點,若BC=4,BE=3,則.(直接寫出結(jié)果)2、在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖①的位置時,易證△ADC≌△CEB(不需要證明),進(jìn)而得到DE、AD、BE之間的數(shù)量關(guān)系為.(探究)(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖②的位置時,求證:DE=AD-BE.(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖③的位置時,直接寫出DE、AD、BE之間的數(shù)量關(guān)系.3、如圖,在中,,,點D是內(nèi)一點,連接CD,過點C作且,連接AD,BE.求證:.4、已知銳角,,于,于F,交于E.求證:ΔBDE≌若BD=8,DC=6,求線段BE的長度.5、如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.(1)求證:BE=CD;(2)F為AD上一點,DF=CD,連接BF,若AD=5,BE=2,求△BDG的面積6、如圖,在同一平面內(nèi)有四個點A、B、C、D,請按要求完成下列問題.(注:此題作圖不要求寫出畫法和結(jié)論)(1)分別連接AB、AD,作射線AC,作直線BD與射線AC相交于點O;(2)我們?nèi)菀着袛喑鼍€段AB+AD與BD的數(shù)量關(guān)系是,理由是.-參考答案-一、單選題1、C【分析】延長BD交AC于點E,根據(jù)角平分線及垂直的性質(zhì)可得:,,依據(jù)全等三角形的判定定理及性質(zhì)可得:,,再根據(jù)三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長BD交AC于點E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點睛】題目主要考查全等三角形的判定和性質(zhì),角平分線的定義等,熟練掌握基礎(chǔ)知識,進(jìn)行邏輯推理是解題關(guān)鍵.2、D【分析】根據(jù)三角形兩邊之和大于第三邊確定第三邊的范圍,根據(jù)題意計算即可.【詳解】解:設(shè)三角形的第三邊長為x,則5﹣2<x<5+2,即3<x<7,∵三角形的第三邊是偶數(shù),∴x=4或6,故選:D.【點睛】本題考查了三角形三邊關(guān)系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.3、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項不符合題意;故選:A.【點睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.4、C【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊可求得結(jié)果【詳解】解:設(shè)第三邊長為c,由題可知,即,所以第三邊可能的結(jié)果為12cm故選C【點睛】本題主要考查了三角形的性質(zhì)中三角形的三邊關(guān)系知識點5、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.6、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結(jié)合線段的和差以及三角形三邊的關(guān)系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當(dāng)A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當(dāng)A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點睛】此題主要考查了三角形三邊關(guān)系,線段之間的關(guān)系,正確分類討論是解題關(guān)鍵.7、C【分析】觀察圖形可知:DE與AC是對應(yīng)邊,B點的對應(yīng)點在DE上方兩個,在DE下方兩個共有4個滿足要求的點,也就有四個全等三角形.【詳解】根據(jù)題意,運用“SSS”可得與△ABC全等的三角形有4個,線段DE的上方有兩個點,下方也有兩個點,如圖.故選C.【點睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.8、B【分析】根據(jù)全等三角形的性質(zhì)直接判定①②,則有,然后根據(jù)角的和差關(guān)系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯誤,④正確,綜上所述:正確的有①②④;故選B.【點睛】本題主要考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.9、C【分析】首先根據(jù)△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性質(zhì)求解即可.【詳解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故選:C.【點睛】此題考查了三角形全等的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的性質(zhì),三角形外角的性質(zhì).10、C【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【詳解】解:設(shè)第三邊長為xcm,根據(jù)三角形的三邊關(guān)系可得:3-2<x<3+2,解得:1<x<5,只有C選項在范圍內(nèi).故選:C.【點睛】本題考查了三角形的三邊關(guān)系,關(guān)鍵是掌握第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.二、填空題1、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.2、【分析】由三角形的外角的性質(zhì)可得代入數(shù)據(jù)即可得到答案.【詳解】解:故答案為:【點睛】本題考查的是三角形的外角的性質(zhì),掌握“三角形的外角等于與它不相鄰的兩個內(nèi)角之和”是解本題的關(guān)鍵.3、AC=DC【分析】由題意可得,BC為公共邊,AB=DB,即添加一組邊對應(yīng)相等,可證△ABC與△DBC全等.【詳解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC與△DBC中,,∴△ABC≌△DBC(SSS),故答案為:AC=DC.【點睛】本題考查了全等三角形的判定,靈活運用全等三角形的判定是本題的關(guān)鍵.4、16cm或14cm【分析】根據(jù)題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當(dāng)腰為6cm時,它的周長為6+6+4=16(cm);②當(dāng)?shù)诪?cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質(zhì)的應(yīng)用,注意:等腰三角形的兩腰相等,注意分類討論.5、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.6、4【分析】根據(jù)題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進(jìn)而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問.7、【分析】根據(jù)全等三角形的性質(zhì)得出AC=FD=3,再求出FC即可.【詳解】解:∵△ABC≌△DEF,F(xiàn)D=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案為:2.【點睛】本題主要是考查了全等三角形的性質(zhì),熟練應(yīng)用全等三角形的性質(zhì),找到對應(yīng)相等的邊,是求解該問題的關(guān)鍵.8、2<n<12【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求第三邊長的范圍.【詳解】解:由三角形三邊關(guān)系定理得:7﹣5<n<7+5,即2<n<12故n的范圍是2<n<12.故答案為:2<n<12.【點睛】本題考查的是三角形三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.9、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當(dāng)BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當(dāng)BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當(dāng)BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當(dāng)BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質(zhì),利用分類討論思想是解答此題的關(guān)鍵.10、59【分析】如圖,過作證明證明再利用三角形的外角的性質(zhì)求解從而可得答案.【詳解】解:如圖,過作,而,,故答案為:【點睛】本題考查的是平行線的性質(zhì),平行公理的應(yīng)用,三角形的外角的性質(zhì),過作再證明是解本題的關(guān)鍵.三、解答題1、(1)證明見解析;(2)證明見解析;(3)或【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;(3)過F作FD⊥AG的延長線交于點D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計算即可.【詳解】(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點為BC中點;(3)當(dāng)點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴AG=CG+AC=5.5,∴,同理,當(dāng)點E在線段BC上時,AG=AC-CG+=2.5,∴,故答案為:或.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.2、(1)DE=AD+BE;(2)見解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因為∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根據(jù)AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)與(1)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)與(1)(2)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;【詳解】解:(1)證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∵DC+CE=DE,∴DE=AD+BE.(2)證明:∵AD⊥MN,BE⊥MN,∵∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.∴CE=AD,CD=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD,理由:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD(或AD=BE-DE,BE=AD+DE等).【點睛】本題考查了鄰補(bǔ)角的意義,同角的余角相等,直角三角形的性質(zhì),全等三角形的判定和性質(zhì)等知識點,能根據(jù)已知證出符合全等的條件是解此題的關(guān)鍵,題型較好,綜合性比較強(qiáng).3、證明見解析.【分析】先根據(jù)角的和差可得,再根據(jù)三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】證明:,,,,,在和中,,,.【點睛】本題考查了三角形全等的判定定理與性質(zhì)等知識點,熟練掌握三角形全等的判定方法是解題關(guān)鍵.4、(1)見解析;(2)10.【分析】(1)由題意可得AD=BD,由余角的性質(zhì)可得∠CBE=∠DAC,根據(jù)“ASA”可證△BDE≌△ADC;(2)由全等三角形的性質(zhì)可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面積公式可求BE的長度.【詳解】(1)證明:∵,∠ABC=45°∴∠ABC=∠BAD=45°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論