版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川內(nèi)江市第六中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,點,在線段上,與全等,其中點與點,點與點是對應(yīng)頂點,與交于點,則等于()A. B. C. D.2、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個 B.2個 C.3個 D.4個3、如圖,點F,C在BE上,AC=DF,BF=EC,AB=DE,AC與DF相交于點G,則與2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B4、下列長度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,55、以下列長度的各組線段為邊,能組成三角形的是()A.,, B.,,C.,, D.,,6、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°7、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm8、如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于點D,連接EB.下列結(jié)論:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個9、如圖,點、、、在同一條直線上,已知,,添加下列條件中的一個:①;②;③;④.其中不能確定的是()A.① B.② C.③ D.④10、以下列各組長度的線段為邊,能構(gòu)成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,中,已知點D、E、F分別為BC、AD、CE的中點,設(shè)的面積為,的面積為,則______.2、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.3、如圖,在Rt△ABC中,CD是斜邊AB上的中線,若AB=10,則CD=_______.4、如圖,△ABC≌△DEF,BE=a,BF=b,則CF=___.5、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時,則△CEF的周長為_____.6、如圖,點C是線段AB的中點,.請你只添加一個條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個答案即可)(2)依據(jù)所添條件,判定與全等的理由是______.7、如圖,方格紙中是9個完全相同的正方形,則∠1+∠2的值為_____.8、如圖,已知,請?zhí)砑右粋€條件,使得,則添加的條件可以為___(只填寫一個即可).9、如圖,中,,,是的中點,的取值范圍為________.10、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動木架,觀察圖②中的變動情況,說一說,其中所蘊含的數(shù)學(xué)原理是_____.三、解答題(6小題,每小題10分,共計60分)1、證明“全等三角形的對應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補充完整,并據(jù)此寫出己知、求證和證明過程.2、如圖△ABC中,已知∠A=60°,角平分線BD、CE交于點O.(1)求∠BOC的度數(shù);(2)判斷線段BE、CD、BC長度之間有怎樣的數(shù)量關(guān)系,請說明理由.3、如圖,在長方形ABCD中,AB=6cm,BC=8cm.動點P從點B出發(fā),沿BC方向以2cm/s的速度向點C勻速運動;同時動點Q從點C出發(fā),沿CD方向以2cm/s的速度向點D勻速運動,當(dāng)一個點停止運動時,另一個點也停止運動.設(shè)運動時間為t(s)(0<t<3).解答下列問題:(1)當(dāng)點C在線段PQ的垂直平分線上時,求t的值;(2)是否存在某一時刻t,使若存在,求出t的值,并判斷此時AP和PQ的位置關(guān)系;若不存在,請說明理由.4、如圖,已知AB=AD,AC=AE,BC=DE,延長BC分別交邊AD、DE于點F、G.(1)∠B與∠D相等嗎?為什么?(2)若∠CAE=49°,求∠BGD的度數(shù).5、已知AMCN,點B在直線AM、CN之間,AB⊥BC于點B.(1)如圖1,請直接寫出∠A和∠C之間的數(shù)量關(guān)系:.(2)如圖2,∠A和∠C滿足怎樣的數(shù)量關(guān)系?請說明理由.(3)如圖3,AE平分∠MAB,CH平分∠NCB,AE與CH交于點G,則∠AGH的度數(shù)為.6、如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.(1)求證:BE=CD;(2)F為AD上一點,DF=CD,連接BF,若AD=5,BE=2,求△BDG的面積-參考答案-一、單選題1、D【分析】根據(jù)點與點,點與點是對應(yīng)頂點,得到,根據(jù)全等三角形的性質(zhì)解答.【詳解】解:與全等,點與點,點與點是對應(yīng)頂點,,.故選:D【點睛】本題主要考查了全等三角形的性質(zhì),熟練掌握全等三角形的對應(yīng)邊相等,對應(yīng)角相等是解題的關(guān)鍵.2、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進而求得三角形的個數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個值.則對應(yīng)的三角形有3個.故選:C.【點睛】本題主要考查了三角形三邊關(guān)系,準(zhǔn)確分析判斷是解題的關(guān)鍵.3、C【詳解】由題意根據(jù)等式的性質(zhì)得出BC=EF,進而利用SSS證明△ABC與△DEF全等,利用全等三角形的性質(zhì)得出∠ACB=∠DFE,最后利用三角形內(nèi)角和進行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC與△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故選:C.【點睛】本題考查全等三角形的判定與性質(zhì),其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).4、D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構(gòu)成三角形;∵3+2=5,∴B不能構(gòu)成三角形;∵3+4<8,∴C不能構(gòu)成三角形;∵∵3+4>5,∴D能構(gòu)成三角形;故選D.【點睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.5、C【分析】根據(jù)三角形三條邊的關(guān)系計算即可.【詳解】解:A.∵2+4=6,∴,,不能組成三角形;B.∵2+5<9,∴,,不能組成三角形;C.∵7+8>10,∴,,能組成三角形;D.∵6+6<13,∴,,不能組成三角形;故選C.【點睛】本題考查了三角形三條邊的關(guān)系,熟練掌握三角形三條邊的關(guān)系是解答本題的關(guān)鍵.三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.6、B【分析】已知,得到,根據(jù)外角性質(zhì),得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點睛】本題主要考查了三角形外角定理的應(yīng)用,準(zhǔn)確分析計算是解題的關(guān)鍵.7、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.8、C【分析】由“SAS”可證△ABC≌△AEF,由全等三角形的性質(zhì)依次判斷可求解.【詳解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正確,∴∠BAE=∠FAC=40°,故①正確,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正確,無法證明AD=AC,故④錯誤,故選:C.【點睛】本題考查全等三角形的判定與性質(zhì),是重要考點,掌握相關(guān)知識是解題關(guān)鍵.9、B【分析】由已知條件知可得:∠A=∠D,AB=DE,再結(jié)合全等三角形的判定定理進行解答即可.【詳解】解:已知條件知:∠A=∠D,AB=DEA、當(dāng)添加AC=DF時,根據(jù)SAS能判,故本選項不符合題意;B、當(dāng)添加BC=EF時則BC=EF,根據(jù)SSA不能判定,故本選項符合題意;C、當(dāng)添加時,根據(jù)ASA能判定,故本選項不符合題意;D、當(dāng)添加時,根據(jù)AAS能判定,故本選項不符合題意.故選:B.【點睛】本題主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成為解答本題的關(guān)鍵.10、C【分析】根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】解:A、1+1=2<8,不能組成三角形,故此選項不合題意;B、3+3=6,不能組成三角形,故此選項不符合題意;C、3+4=7>5,能組成三角形,故此選項符合題意;D、1+2=3,不能組成三角形,故此選項不合題意;故選:C.【點睛】本題考查了構(gòu)成三角形的條件,掌握“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解題的關(guān)鍵.二、填空題1、4【分析】利用三角形的中線的性質(zhì)證明再證明從而可得答案.【詳解】解:點F為CE的中點,點E為AD的中點,故答案為:【點睛】本題考查的是與三角形的中線有關(guān)的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關(guān)鍵.2、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當(dāng)BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當(dāng)BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當(dāng)BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當(dāng)BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質(zhì),利用分類討論思想是解答此題的關(guān)鍵.3、5【分析】作交CD的延長線于E點,首先根據(jù)ASA證明,得到,,然后根據(jù)證明,得到,即可求出CD的長度.【詳解】解:如圖所示,作交CD的延長線于E點,∵,∴,∵CD是斜邊AB上的中線,∴,∴在和中,∴,∴,,∵,,∴,∴在和中,∴,∴,∴.故答案為:5.【點睛】本題考查了直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.4、##【分析】先利用線段和差求EF=BE﹣BF=a-b,根據(jù)全等三角形的性質(zhì)BC=EF,再結(jié)合線段和差求出FC可得答案.【詳解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案為:.【點睛】本題考查全等三角形的性質(zhì),線段和差,解題的關(guān)鍵是根據(jù)全等三角形的性質(zhì)得出BC=EF.5、4【分析】根據(jù)題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問.6、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個三角形有一組對應(yīng)邊相等,一組對應(yīng)角相等,根據(jù)三角形全等的判定方法添加條件即可;(2)根據(jù)添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點C是線段AB的中點,∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關(guān)鍵.7、【分析】如圖(見解析),先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,在和中,,,,,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質(zhì)等知識點,正確找出兩個全等三角形是解題關(guān)鍵.8、或【分析】根據(jù)全等三角形的判定方法即可解決問題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關(guān)鍵.9、【分析】延長AD到E,使,連接,證,得到,在中,根據(jù)三角形三邊關(guān)系定理得出,代入求出即可.【詳解】解:延長AD到E,使,連接,如圖所示:∵AD是BC邊上的中線,∴,在和中,,∴,∴,在中,,∴,∴,故答案為:.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的三邊關(guān)系定理的應(yīng)用,熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.10、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒有變形,其中所蘊含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.三、解答題1、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根據(jù)角平分線的定義得出∠BAD=∠B′A′D′,根據(jù)全等三角形的判定得出△BAD≌△B′A′D′,再根據(jù)全等三角形的性質(zhì)得出答案即可.【詳解】解:如圖,已知:△ABC≌△A′B′C′,AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,求證:AD=A′D′,證明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能求出△BAD≌△B′A′D′是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,兩直角三角形全等還有HL,全等三角形的對應(yīng)邊相等.2、(1)120°;(2)BC=BE+CD,理由見解析【分析】(1)利用角平分線的定義以及三角形內(nèi)角和定理計算即可;(2)只要證明∠BOF=∠BOE=60°,可得∠COD=∠COF=60°即可證明.【詳解】解:(1)在△ABC中,∠A=60°,BD和CE分別平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60°=120°.(2)BC=BE+CD.理由如下:在BC上截取BF=BE,連接OF,∵BD平分∠ABC,∴∠EBO=∠FBO,在△OBE和△OBF中,,∴△OBE≌△OBF(SAS),∴∠BOE=∠BOF,∵∠BOC=120°,∴∠BOE=60°,∴∠BOF=∠COF=∠COD=60°,∵OC=OC,∠OCD=∠OCF,∴△COD≌△COF(ASA).∴CF=CD,∴BC=BF+CF=BE+CD.【點睛】本題考查全等三角形的判定和性質(zhì)、角平分線的定義等知識,解題的關(guān)鍵是正確尋找全等三角形全等的條件,屬于中考??碱}型.3、(1)的值為2.(2)存在,的值為1,.【分析】(1)當(dāng)點C在線段PQ的垂直平分線上時,利用垂直平分線的性質(zhì),得到,之后列出關(guān)于t的方程,求出t的值即可.(2)當(dāng)時,根據(jù)對應(yīng)邊,列出關(guān)于t的方程,求出t的值,之后利用全等三角形的性質(zhì),得到對應(yīng)角相等,最后證得.【詳解】(1)解:由題意可知:,,點C在線段PQ的垂直平分線上,,故有:,解得:的值為2.(2)解:,,,即.四邊形ABCD是長方形,.在中,且,,.【點睛】本題主要是考查了垂直平分線和全等三角形的性質(zhì),熟練應(yīng)用相關(guān)性質(zhì)找到對應(yīng)邊相等,求出時間t,是解決本題的關(guān)鍵,另外,關(guān)于線段關(guān)系,一般以垂直關(guān)系為多.4、(1)相等,理由見解析;(2).【分析】(1)根據(jù)SSS證明,然后由全等三角形對應(yīng)邊相等即可證明;(2)由可得,進而可求出,然后根據(jù)三角形外角的性質(zhì)即可求出∠BGD的度數(shù).【詳解】解:(1)相等,理由如下:在和中,∴,∴;(2)∵,∴,∴,∵,,∴.【點睛】此題考查了全等三角形的性質(zhì)和判定,三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握根據(jù)題意證明.5、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,見解析;(3)45°【分析】(1)過點B作BE∥AM,利用平行線的性質(zhì)即可求得結(jié)論;(2)過點B作BE∥AM,利用平行線的性質(zhì)即可求得結(jié)論;(3)利用(2)的結(jié)論和三角形的外角等于和它不相鄰的兩個內(nèi)角的和即可求得結(jié)論.【詳解】(1)過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案為:∠A+∠C=90°;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年西安旅游股份有限公司招聘模擬筆試試題及答案解析
- 2025廣西旅發(fā)集團廣西自貿(mào)區(qū)醫(yī)院管理有限公司招5人考試備考題庫及答案解析
- 2025年亳州渦陽縣人力資源和社會保障局公開招募青年就業(yè)見習(xí)人員備考筆試題庫及答案解析
- 2025廣西壯族自治區(qū)人民醫(yī)院防城港醫(yī)院防城港市第一人民醫(yī)院緊急招聘超聲醫(yī)學(xué)科前臺登記員2人參考考試試題及答案解析
- 2025山東濟南市平陰豐源炭素有限責(zé)任公司招聘29人參考考試題庫及答案解析
- 2025中國信托業(yè)保障基金有限責(zé)任公司招聘參考考試試題及答案解析
- 2026年南昌大學(xué)附屬口腔醫(yī)院高層次人才招聘備考筆試題庫及答案解析
- 2025云南玉溪數(shù)字資產(chǎn)管理有限公司市場化選聘中層管理人員招聘3人備考筆試題庫及答案解析
- 網(wǎng)店顧問合同范本
- 網(wǎng)絡(luò)轉(zhuǎn)移協(xié)議書
- 2025年及未來5年市場數(shù)據(jù)中國拖拉機制造市場競爭態(tài)勢及投資戰(zhàn)略規(guī)劃研究報告
- 廣東省廣州市越秀區(qū)2024-2025學(xué)年八年級上學(xué)期期末考試英語試題
- 地震波速反演方法-洞察及研究
- 百年未有之大變局課件
- 2025年時事政治考試100題及答案
- 應(yīng)急救援電源
- 電力行業(yè)電力工程設(shè)計師崗位招聘考試試卷及答案
- 2025年北京市建筑施工作業(yè)人員安全生產(chǎn)知識教育培訓(xùn)考核試卷E卷及答案
- 中鐵群安員培訓(xùn)
- 2024年云南省第一人民醫(yī)院招聘考試真題
- 2025急性高甘油三酯血癥胰腺炎康復(fù)期多學(xué)科管理共識解讀
評論
0/150
提交評論