版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
河南開封市金明中學7年級數(shù)學下冊第四章三角形單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,∠BAD=90°,AC平分∠BAD,CB=CD,則∠B與∠ADC滿足的數(shù)量關系為()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°2、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N3、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點,在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°4、如圖,在和中,,,,,連接,交于點,連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個5、三角形的外角和是()A.60° B.90° C.180° D.360°6、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm7、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56118、一個三角形的兩邊長分別是3和7,且第三邊長為整數(shù),這樣的三角形周長最大的值為()A. B. C. D.9、如圖,為了估計一池塘岸邊兩點A,B之間的距離,小穎同學在池塘一側(cè)選取了一點P,測得,那么點A與點B之間的距離不可能是()A. B. C. D.10、如圖,平分,,連接,并延長,分別交,于點,,則圖中共有全等三角形的組數(shù)為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當△PEC與△QFC全等時,CQ的長為______.2、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數(shù)式表示).3、一個零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個零件是否合格,只要檢驗∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個零件______(填“合格”不合格”).4、如圖,在△ABC中,∠C=90°,AD是BC邊上的中線,交BC于點D,CD=5cm,AC=12cm,則△ABD的面積是__________cm2.5、如圖,AE與BD相交于點C,AC=EC,BC=DC,AB=5cm,點P從點A出發(fā),沿A→B方向以2cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點B時,P、Q兩點同時停止運動.設點P的運動時間為t(s).(1)AP的長為___cm.(用含t的代數(shù)式表示)(2)連接PQ,當線段PQ經(jīng)過點C時,t=___s.6、一個等腰三角形的一邊長為2,另一邊長為9,則它的周長是________________.7、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.8、如圖,點C是線段AB的中點,.請你只添加一個條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個答案即可)(2)依據(jù)所添條件,判定與全等的理由是______.9、如圖,∠ABD=80°,∠C=38°,則∠D=___度.10、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.三、解答題(6小題,每小題10分,共計60分)1、證明“全等三角形的對應角的平分線相等”.要求:將已有圖形根據(jù)題意補充完整,并據(jù)此寫出己知、求證和證明過程.2、已知是的三邊長.(1)若滿足,,試判斷的形狀;(2)化簡:3、已知:如圖,AD,BE相交于點O,AB⊥BE,DE⊥AD,垂足分別為B,D,OA=OE.求證:△ABO≌△EDO.4、在中,,,點D是直線AC上一動點,連接BD并延長至點E,使.過點E作于點F.(1)如圖1,當點D在線段AC上(點D不與點A和點C重合)時,此時DF與DC的數(shù)量關系是______.(2)如圖2,當點D在線段AC的延長線上時,依題意補全圖形,并證明:.(3)當點D在線段CA的延長線上時,直接用等式表示線段AD,AF,EF之間的數(shù)量關系是______.5、如圖,已知AB=AD,AC=AE,BC=DE,延長BC分別交邊AD、DE于點F、G.(1)∠B與∠D相等嗎?為什么?(2)若∠CAE=49°,求∠BGD的度數(shù).6、如圖,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求證:AF=DE.-參考答案-一、單選題1、C【分析】由題意在射線AD上截取AE=AB,連接CE,根據(jù)SAS不難證得△ABC≌△AEC,從而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,證得∠B=∠CDE,即可得出結(jié)果.【詳解】解:在射線AD上截取AE=AB,連接CE,如圖所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC與△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故選:C.【點睛】本題主要考查全等三角形的判定與性質(zhì),解答的關鍵是作出適當?shù)妮o助線AE,CE.2、A【分析】根據(jù)兩個三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項不符合題意.故選:A.【點睛】本題重點考查了三角形全等的判定定理,兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.3、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關鍵.4、C【分析】由全等三角形的判定及性質(zhì)對每個結(jié)論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質(zhì)有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設平分則∵∴即由④知又∵為對頂角∴∴∴∴在和中,∴即AB=AC又∵故假設不符,故不平分故③錯誤.綜上所述①②④正確,共有3個正確.故選:C.【點睛】本題考查了全等三角形的判定及性質(zhì),靈活的選擇全等三角形的判定的方法是解題的關鍵,從判定兩個三角形全等的方法可知,要判定兩個三角形全等,需要知道這兩個三角形分別有三個元素(其中至少一個元素是邊)對應相等,這樣就可以利用題目中的已知邊角迅速、準確地確定要補充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個三角形全等的思路.5、D【分析】根據(jù)三角形的內(nèi)角和定理、鄰補角的性質(zhì)即可得.【詳解】解:如圖,,,又,,即三角形的外角和是,故選:D.【點睛】本題考查了三角形的內(nèi)角和定理、鄰補角的性質(zhì),熟練掌握三角形的內(nèi)角和定理是解題關鍵.6、C【分析】設三角形第三邊的長為xcm,再根據(jù)三角形的三邊關系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關系的應用.此類求三角形第三邊的范圍的題,實際上就是根據(jù)三角形三邊關系定理列出不等式,然后解不等式即可.7、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點睛】本題考查了三角形的三邊關系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關鍵.8、C【分析】先根據(jù)三角形的三邊關系定理求得第三邊的取值范圍;再根據(jù)第三邊是整數(shù),從而求得周長最大時,對應的第三邊的長.【詳解】解:設第三邊為a,根據(jù)三角形的三邊關系,得:7-3<a<3+7,即4<a<10,∵a為整數(shù),∴a的最大值為9,則三角形的最大周長為9+3+7=19.故選:C.【點睛】本題考查了三角形的三邊關系:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.9、D【分析】首先根據(jù)三角形的三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,求出AB的取值范圍,然后再判斷各選項是否正確.【詳解】解:∵PA=100m,PB=90m,∴根據(jù)三角形的三邊關系得到:,∴,∴點A與點B之間的距離不可能是20m,故選A.【點睛】本題主要考查了三角形的三邊關系,掌握三角形兩邊只差小于第三邊、兩邊之和大于第三邊是解題的關鍵.10、C【分析】求出∠BAD=∠CAD,根據(jù)SAS推出△ADB≌△ADC,根據(jù)全等三角形的性質(zhì)得出∠B=∠C,∠ADB=∠ADC,求出∠ADE=∠ADF,根據(jù)ASA推出△AED≌△AFD,根據(jù)全等三角形的性質(zhì)得出AE=AF,根據(jù)SAS推出△ABF≌△ACE,根據(jù)AAS推出△EDB≌△FDC即可.【詳解】解:圖中全等三角形的對數(shù)有4對,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB?∠EDB=∠ADC?∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故選:C.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能綜合運用定理進行推理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應邊相等,對應角相等.二、填空題1、7或3.5【分析】分兩種情況:(1)當P在AC上,Q在BC上時;(2)當P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關于的方程是解題的關鍵.2、6【分析】連接CF,依據(jù)AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設S△ADF=S△CDF=x,依據(jù)S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當BE=nCE時,S△AEC=,設S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關鍵是作輔助線,根據(jù)三角形之間的面積關系得出結(jié)論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.3、不合格【分析】連接AC并延長,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進行判定.【詳解】解:如圖,連接AC并延長,由三角形的外角性質(zhì)可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個零件不合格.故答案為:不合格.【點睛】本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出兩個三角形是解題的關鍵.4、30【分析】根據(jù)三角形的面積公式求出△ACD的面積,利用三角形中線的性質(zhì)即可求解.【詳解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面積為(cm2),∵AD是BC邊上的中線,∴△ACD的面積=△ABD的面積為(cm2),故答案為:30.【點睛】本題考查了三角形的面積和三角形中線的性質(zhì),關鍵是根據(jù)三角形的中線把三角形分成面積相等的兩部分解答.5、2【分析】(1)根據(jù)路程=速度×時間求解即可;(2)根據(jù)全等三角形在判定證明△ACB≌△ECD可得AB=DE,∠A=∠E,當PQ經(jīng)過點C時,可證得△ACP≌△ECQ,則有AP=EQ,進而可得出t的方程,解方程即可.【詳解】解:(1)由題意知:AP=2t,0<t≤,故答案為:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,當PQ經(jīng)過點C時,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案為:.【點睛】本題考查全等三角形的應用,熟練掌握全等三角形的判定與性質(zhì)是解答的關鍵.6、20【分析】題目給出等腰三角形有兩條邊長為2和9,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】解:分兩種情況:當腰為2時,2+2<9,所以不能構(gòu)成三角形;當腰為9時,2+9>9,所以能構(gòu)成三角形,周長是:2+9+9=20.故答案為:20.【點睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構(gòu)成三角形進行解答,這點非常重要,也是解題的關鍵.7、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關鍵.8、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個三角形有一組對應邊相等,一組對應角相等,根據(jù)三角形全等的判定方法添加條件即可;(2)根據(jù)添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點C是線段AB的中點,∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關鍵.9、【分析】由三角形的外角的性質(zhì)可得代入數(shù)據(jù)即可得到答案.【詳解】解:故答案為:【點睛】本題考查的是三角形的外角的性質(zhì),掌握“三角形的外角等于與它不相鄰的兩個內(nèi)角之和”是解本題的關鍵.10、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關鍵.三、解答題1、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根據(jù)角平分線的定義得出∠BAD=∠B′A′D′,根據(jù)全等三角形的判定得出△BAD≌△B′A′D′,再根據(jù)全等三角形的性質(zhì)得出答案即可.【詳解】解:如圖,已知:△ABC≌△A′B′C′,AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,求證:AD=A′D′,證明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能求出△BAD≌△B′A′D′是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,兩直角三角形全等還有HL,全等三角形的對應邊相等.2、(1)是等邊三角形;(2)【分析】(1)由性質(zhì)可得a=b,b=c,故為等邊三角形.(2)根據(jù)三角形任意兩邊和大于第三邊,任意兩邊差小于第三邊判定正負,再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安車輛管理制度圖片大全(3篇)
- 餐廳十一活動策劃方案(3篇)
- 飛機安全出口課件
- 2026廣西欽州市靈山縣金鑫供銷集團有限公司招聘3人備考考試題庫及答案解析
- 2026河北雄安新區(qū)應急管理協(xié)會招聘1人筆試備考試題及答案解析
- 兒童股骨骨折的牽引治療與護理
- 2026湛江農(nóng)商銀行校園招聘15人備考考試題庫及答案解析
- 2026年普洱市廣播電視局招聘公益性崗位工作人員(2人)備考考試試題及答案解析
- 2026年1月廣東廣州市天河第一小學招聘編外聘用制專任教師1人筆試備考題庫及答案解析
- 2026重慶西南大學附屬中學招聘備考考試題庫及答案解析
- 超聲科工作總結(jié)與計劃
- 旅居養(yǎng)老策劃方案
- T-CRHA 089-2024 成人床旁心電監(jiān)測護理規(guī)程
- DBJ52T 088-2018 貴州省建筑樁基設計與施工技術規(guī)程
- 專題15 物質(zhì)的鑒別、分離、除雜、提純與共存問題 2024年中考化學真題分類匯編
- 小區(qū)房屋維修基金申請范文
- 武漢市江岸區(qū)2022-2023學年七年級上學期期末地理試題【帶答案】
- 中職高二家長會課件
- 復方蒲公英注射液在痤瘡中的應用研究
- 淮安市2023-2024學年七年級上學期期末歷史試卷(含答案解析)
- 家長要求學校換老師的申請書
評論
0/150
提交評論