版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
opentext"
WHITEPAPER
Smartsuccess
IgnitethepowerofAlanddatascienceacrosstheorganization
opentext"
Contents
Theimportanceofartificialintelligence4
ThebenefitsofintroducingAl5
Keystageswithinthedatascienceprojectlifecycle6
Creatingahigh-performingdatascienceteam8
Thecriticalroleofinternalandexternalpartnerships9
FiveAlusecasesyourcompanycanconsider:PoweredbyOpenTextMagellan10
RealizingthebenefitsofusingMagellanforAl11
Resources12
Smartsuccess:IgnitethepowerofAlarxidatascienceacrosstheorganization212
opentext"
Summary
Artificialintelligence(Al)transformsorganizationsbyempoweringthemtomake
moredata-drivendecisionsandeliminatestediousandrepetitiveprocesses.Yet,
manycompaniesstruggletoseehowtodeploytherightAlsolutionfortheir
organization.WhiletheymayhaveageneralunderstandingofwhatAlcando,it
remainsunclearastohowtheycanleveragedatascienceandadvancedanalytics
toimproveefficiency.
ThiswhitepaperwillhelpyouidentifywhetherAlistherightfitforyourorganization
andhowtosetupanAlstructurethataddsvaluetothebusiness.Itoutlinesthe
benefitsofAlfortheenterprise,providesalistofquestionstoaskbeforegetting
startedandoffersguidanceforstructuringahigh-performingdatascienceteam.In
addition,itdetailstheiterativeprocessformanagingasuccessfulAlprojectwitha
comprehensive,step-by-stepguide.
ItalsoprovidesfiveusecasestoalloworganizationstoexplorethepotentialofAl
withintheirownorganizations.
Smartsuccess:IgnitethepowerofAlarxidatascienceacrosstheorganization3”2
opentext"
ThebenefitsofintroducingAl
Withevolvingcustomerdemandsandagrowingsenseofimmediacyaffectingall
industries,businessleadersmustmakedecisionsquickerthanever.Ofcourse,
informeddecisionsarebornfromtheabilitytoanalyzeasmuchdataaspossible,
butcollecting,contextualizing,analyzingandderivinginsightsfromhugevolumesof
informationistootime-consuming.
Machinelearningautomatesthetediouselementsofhumanresearchandreview
toprovidevaluableanalysesandrecommendations,amplifyingtheroleofhuman
employeesacrossbusinessprocesses—noteliminatingit,assomemightfear.
Withthesecapabilities,AI-poweredsolutionscan:
呼
SavetimeDriveHelpyoustayImprove
andmoneyefficiencycompetitivesecurity
Maximizingthebenefitsforyourenterprise
TheAljourneywillbedifferentforeachorganizationbasedonitsassessmentsof
needs,strengths,processes,goals,etc.Itshouldthereforenotbeexpectedthat
allorganizationsadoptAlinthesameway.Considerthefollowingquestionswhen
determiningwhetheranAl-poweredsolutionwillnotonlybefeasible,butalso
beneficial,foryourorganization:
WhatspecificobjectivescanweachievebyintroducingAl?
Alwillonlyyieldorganization-widesuccessifyouareabletolookatitthrough
astrategicbusinesslens—notasanITproject.Thisrequirescross-functional
collaborationtoidentifytheorganization'soverarchingobjectives.Youmightchoose
toimplementtechnologyinawaythatreducesrisk,improvesproductivityorhelps
youmakemoreaccuratepredictions.WhileAlcandoallofthisandmore,starting
withaspecificgoalwillhelpyoudevelopadetailedandactionableplantogetthere.
HowwillAlhelpussecureacompetitiveedge?
IfyouarenotsurehowtoleverageAltohelpsecurebetterperformance,consider
anyindustrytrendsthatmightbetakingshape.Analyzingthedirectionyour
businesslineismovinginshouldhelpyouidentifywaystomeetcustomerdemands
andstaycompetitivewithAl.InFinancialServices,forexample,banksareusing
Altohelpthemmakemoretailoredproductandservicerccommcndationo.
Usecasesfromyoursectorwillalsoprovetobeavaluableresourcetohelpyou
envisiontherightsolutionsforyourneeds.
Doyouhavetherightdata?
Doyouhavedatarelevanttoansweringthebusinessproblem?Howmuchdatado
youhave?Whereisyourdata?Isdatareadilyaccessibleforanalysisandmodelling?
Withtheanswerstothesequestionsinmind,youcanbeginpursuingasuccessful
Alprojectinyourorganization.
Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganization5/12
opentext"
1.DefinetaskKeystageswithinthedatascienceprojectlifecycle
2.CollectdataTheprocessofdevelopingamachinelearningmodelishighlyiterative.Often,you
3.Modelexplorationwillfindyourselfreturningtopreviousstepsbeforeproceedingtoasubsequent
one.Afterall,amachinelearningprojectisnotconsideredcompleteafterthe
4.ModelrefinementfirstversionhasbeendeployedInstead,thefeedbackyoucollectaftertheinitial
5.Testingandevaluationversionwillhelpyoushapenewgoalsandimprovementsforthenextiteration.
6.Deploymentandintegration1.Projectplanning/Definetask
7.ContinuousmaintenanceManyAlprojectsfallshortbecauseorganizationsjumpdirectlyintomodeling
withouttakingthetimetoplan.Startingwithacohesiveplangetseveryoneon
thesamepageandmaypreventroadblocksdowntheroad.Whileitisnotalways
simpletodefineamodeltaskfromthebeginning,brainstormingshouldhelpyou
identifyprojectswithhighpotential,includingthosethatcouldmakeabigimpact,
yetstillbefeasible.Wheremightpredictiondrivethelargestvalue?
Duringthisstep,youshouldalsoestablishwhatkindofdatayouwillneedto
supportyourAlproject,howyouwillacquireitandhowmuchdataisneeded.For
example,ifyouarethinkingofdeployingasolutionforpredictivemaintenanceona
train,youmightpullinformationfromloTsensors,weatherpatternsandpassenger
travelpatterns.
Definetask
Machinelearningdevelopmentlifecycle
2.Dataacquisition/Collectdata
Howyoulabelyourdatacanhaveahugeimpactonmodelperformance.Insome
cases,youmaybeabletouseaself-labelingsystem,butinothers,manually
labelingdatamaybenecessary.Beconsistentinyourlabelingcriteriaandbesure
toassociatespecificmodelswithdatasetversionstoavoidconfusion.
Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganization6/12
opentext"
3.Modelexploration
Todeterminewhetherthemodelsyourdatascientistsarecreatingwillbeeffective,
youmustfirstdeterminebaselinesagainstwhichmodelperformancewillbe
measured.Thebestapproachistostartsmallwithaninitialdatapipeline.Youwill
likelytestmanyideasthroughoutthisstep,butultimately,oneleadingmodelwill
emerge.Youcanreproducetheresultsofthismodel,thenapplyttoyourdataset
forasecondbaseline.Thereafter,youcanrevisitstepsoneandtwotoensureitfits.
4.Modelrefinement
Oncethemodelisinplace,refineitbydebuggingitandperforminganerror
analysistopinpointpotentialfailures.Asyouenhancethemodel,considerthe
followingquestions:
?Canthedatascientistexplaintheirchoicesandaretheyreproducible?
?Howistheaccuracymeasurec?
?Haveyoumeasuredthepotentialprofitsavingsoftheproject?
-Canothersunderstandthenotesandprojectmethodology?
?Whatisthereleaseplanandhowwillyoumeasuresuccess?
?Hasdatasecuritybeenreviewedonthealgorithmsandpipelines?
5.Testingandevaluation
Often,datascientistsfindthat"datainthewild"tendstobedifferentfromthe
datatheyusedfortrainingpurposes.Forthisreason,itisimportanttorevisitthe
metricformodelevaluationtoensurethattheoneyouhavechosenisappropriate
forfacilitatingthedesiredactions.Nowisalsothetimetowritetestsfortheinput
datapipeline,modelinferencefjnctionalityandspecificscenariosexpectedin
production.
6.Deploymentandintegration
Forbestresults,startwithamodeldeploymentamongasmallgroupofusers.If
everythingrunssmoothly,rollitouttoallusers.Youshouldcontinuetomonitorlive
dataandmodelpredictiondistrioutions.
7.Continuousmaintenance
Followingdeployment,besuretoaddressanychangesthatimpactthesystem
andretrainthemodelperiodicallytopreventitfrombecomingwornout.Should
modelownershiptransfer,youshouldensurethatthenewteamisproperly
educatedonthemodel.
Ofcourse,toexecutethesestepseffectively,youmusthavetheproperteaminplace.
Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganization7/12
opentext"
Creatingahigh-performingdatascienceteam
Alprojectsarenotsolosports.Theyrequiretheongoingcontributionsand
collaborationfromanumberofkeyteammembers.Becausedatascienceisan
intersectionofvariousfunctions,includingmathandstatistics,computerscience
andbusinessknowledge,youwillneedadynamicgroupofindividualstoforma
high-performingmachinelearningteam.
Typically,teamsinvolveindividualsfromdatascienceanddataengineering,as
wellassubjectmatterexperts.Hereisalookateachoftheserolesinmoredetail:
Dataengineers:Thesespecialistsaretypicallytaskedwithbuildngthedata
infrastructureofanorganization.Theyhavestrongprogrammingandhardware
skills,arefamiliarwithbigdatatechnologiesandexcelinbuildingdatapipelines.
Theyarenotnecessarilyexpertsinanalyzingandmodellingdatabutshouldbeable
toworkwithrelevantbusinessdivisionstodeterminethedatacharacteristicsfor
eachusecase.
Datascientists:Afteryouhavebuiltoutyourdatainfrastructure,youwill
needpeoplewhocantakethatdata,cleanit,analyzeit,applyalgorithms,
runcxpcrimcntGandcommunicatercGultGeffectively.ThcccprofcGGionalG
typicallyusetools,suchasJupyter'notebookandRStudio?,haveknowledgeof
programminglanguages,suchasRandPython?,andexperienceworkingwithbig
datatechnologies,suchasApacheHadoop?andApacheSpark".haddition,they
haveastrongbackgroundinstatsties,programmingandmachinelearning.
Subjectmatterexperts:Subjectmatterexpertshelpcultivatestrategies,generate
ideasandexaminefactorsnecessaryforsupportingdifferentusecases.They
understandthekeybusinessproblem,processesandchallenges.Theirinput
andknowledgearecrucialinhelpingtheteamdevelopmeaningfulsolutionsthat
providebusinessvalueandovercomechallenges.
Datasciencemanager:Datasciencemanagersarehands-onleaderswhohelpbuild
thefoundationofanorganization'sdatasciencestrategy,recruitandcreatetalent
teams,ensureeffectivecommunicationamongmembersanddevelopprocessesfor
theteamtofollow.Theyareinchargeofconnectingthedatascienceandanalytics
teamwiththerestoftheorganization,otherdivisionsandexecutives.Oneoftheircore
responsibilitiesistotranslatecomplexAlandMLterminologytononexpertsandmake
suretheteamworksinalignmentwiththestrategyoftheoverallorganization.
DataengineeringDatascientistSubjectmatterexperts
?Helpsidentifythe?Cleans,massages?Providesfeedback
rightdatasetsandorganizes(big)dataonoutouts
?Helpsbuildthedata?Appliesdescriptive,?Helpsensureanalysis
infrastructureofpredictiveandprescriptiveisapptopriate/moving
anorganizationanalyticaltechniquestointherightdirection
gaininsights,build
modelsandsolve
abusinessproblem
Datasciencemanager
?Guidestheteam-egardingthebestuseoftoolsandresources
?HelpstranslatecomplexAlandMLterminologyfornon-experts
?Ensurestheteamworksinalignmentwiththestrategyoftheoverallorganization
Datasciencecoreteam
Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganizationai2
opentext"
Thecriticalroleofinternalandexternalpartnerships
Foreffectiveexecution,Almustbebuiltonstrongpartnerships,bothinternallyand
externally.Eachpartyinvolvedmustbealignedwiththeoverarchingdatastrategy
tokeepalleffortsfocusedonthesamegoal.Wheneveryoneisalignedandknows
theirrole,theycanachievereal,measurableresultsfromtheAlpractice.
Internalpartnerships
Notonlyishavingtherightpeopleonyourteamimportant,soisensuringthey
havetheresourcesneededtoadoptAltechnologyandtocollaborate.Tofacilitate
broadAltraining,makesureyojhaveinputfromanAlexpertwhocanguide
yourorganization.Theycanworkwithyourchieflearningofficer(CLO)tofindor
developtrainingmaterials,includingvideotutorialsandcourses.Theorganization
shouldthendevelopproceduresforeachroleinvolvedwithAl,includingexecutive
leaders,businessunitmanagersanddatascientists.
Before,duringandafterdeployment,theremustbeconstantcorrmunication
betweentheAlteamandthebusinessunit.Eachspecialisthasstrengthsand
boundariestotheirskillsets,soworkingwithotherswillbeanessentialaspectof
projectsuccess.Typically,datascientistsordatasciencemanagerswillensure
cross-functionalcollaborationtocreatebusinessvalueandensurecomplexAlterms
arebeingtranslatedtousableinsights.Theseindividualsmustalsoensurethattheir
workisalignedwiththeorganization'soverarchinggoal.ThisiswhereAlsystems
empowerteamstobreakdownsilosandcommunicateinsightsacrossteams.
Externalpartnerships
FindingtherightAlpartnerforyourorganizationisanothercomponent
integraltothesuccessofyourAlpractice.AtrustedAlpartnershojldallowyou
toleverageunderusedyetvaluabledata,allowdatascientiststoworkintheir
familiarenvironments,suchasJupyternotebookandR,andprovidetheability
tooperationalizemodelsinbusiness-friendlyinterfaces.Establishngaproject
managerwhocancollaboratewithyourAlpartnerwill
alsobecriticaltosuccess.
Theimportanceofexecutivebuy-in
OnecommoncauseoffailureamongAlprojectsislackofbuy-in.Wniledatascientists
andsubjectmatterexpertsmaybeabletoseethevalueofAlintheenterprise,
supportmuststartatthetop.CommunicatinghowanAlinvestmentcouldhelpthe
companysavemoneyandpilotingsolutionscanhelpteamsestablishcredibilityand
attractsupportfromleadership.Moreover,explainingmodeloutputsinconciseand
tangibletermscanhelpaccelerateadoptionandbuildtrustamongs:akeholders.
Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganization9/12
opentext"
FiveAlusecasesyourcompanycanconsider:
PoweredbyOpenTextMagellan
Al-augmentedrecommendations
Consumersareinundatedwithfrequentandirrelevantproductoffers.To
understandhowtheycouldbetterservetheircustomers,amajorbankdeployed
acustomizedpersonalizationmodelwithintelligentrecommencations.The
bankimplementedasystemthatharnessesAlandbigdatatomonitorcustomer
actions,predicttheirneedsanddeliverhighlypersonalizedexperiencesacross
everychannel.Withadeeperinsightintocustomerpreferencesandbehaviors,
thebankhasimproveddealsandoffersfromretailpartners.Withfewerannoying
andirrelevantoffers,thecustomerexperiencehasimprovedandthebankhasseen
higherclick-throughandconversionratesontheiroffers.
Intelligentcapture
Whiletraditionalcontentcapturesystemshelpbusinessesmanagetheircontent,
thereisagrowingneedtoautomatetheclassificationandroutingofcontentatscale.
Al-enhancedcapturecanextractinformationfromenterpriseconlentandroute
documentstotheappropriateworkflow.Withthesolution,organizations,suchas
largebanks,canintelligentlyclassifydocumentsandfreeupstafffromsortingthrough
thousandsofincomingdocumentseveryday.
Classification/Smartmigration
FromspreadsheetstoMicrosoft8Worddocumentsandemail,organizationsare
swarmingwithbillionsofpiecesofcontent.Managingthisunstructured,textual
dataisnotoriouslydifficult,butmachinelearningcanhelporganizationscategorize
informationandtriggerprocesses,therebyautomatingknowledgeclassification.
Thisisespeciallybeneficialfororganizationswithsensitivedata,includi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《軟件項目開發(fā)過程中的風險管理與企業(yè)核心競爭力》教學研究課題報告
- 2025年少先隊知識測試考試題庫及答案
- 衢州市衢江區(qū)2025年網格員考試題庫及答案
- 2025網格員面試經典題目與解答
- 初中地理:自制簡易凈水裝置在水資源匱乏地區(qū)的推廣與應用教學研究課題報告
- 生成式AI在高中數(shù)學課堂中的應用與教學效果評估研究教學研究課題報告
- 金融科技在金融產品設計中的創(chuàng)新點-洞察及研究
- 高中生對學校體育競賽裁判工作評價與改進措施研究教學研究課題報告
- 氫能源系統(tǒng)在智能電網中的集成策略-洞察及研究
- 口碑傳播對餐飲業(yè)顧客滿意度的影響-洞察及研究
- 廣東省深圳市羅湖區(qū)2024-2025學年高一上學期1月期末物理試題(含答案)
- 《危險化學品安全法》全文學習課件
- 星羅棋布的港口課件
- 2025年下半年貴州遵義市市直事業(yè)單位選調56人考試筆試備考題庫及答案解析
- 2026年企業(yè)生產計劃制定優(yōu)化與訂單交付率提升方案
- 借用土地合同范本
- 支撐梁鋼筋自動計算表模板
- 2025天津大學管理崗位集中招聘15人筆試考試備考題庫及答案解析
- 請結合材料理論聯(lián)系實際分析如何正確評價人生價值?人生價值的實現(xiàn)需要哪些條件?參考答案
- 2026年黨支部主題黨日活動方案
- 幼兒園中班交通安全教育課件
評論
0/150
提交評論