點燃組織內人工智能和數(shù)據(jù)科學的力量_第1頁
點燃組織內人工智能和數(shù)據(jù)科學的力量_第2頁
點燃組織內人工智能和數(shù)據(jù)科學的力量_第3頁
點燃組織內人工智能和數(shù)據(jù)科學的力量_第4頁
點燃組織內人工智能和數(shù)據(jù)科學的力量_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

opentext"

WHITEPAPER

Smartsuccess

IgnitethepowerofAlanddatascienceacrosstheorganization

opentext"

Contents

Theimportanceofartificialintelligence4

ThebenefitsofintroducingAl5

Keystageswithinthedatascienceprojectlifecycle6

Creatingahigh-performingdatascienceteam8

Thecriticalroleofinternalandexternalpartnerships9

FiveAlusecasesyourcompanycanconsider:PoweredbyOpenTextMagellan10

RealizingthebenefitsofusingMagellanforAl11

Resources12

Smartsuccess:IgnitethepowerofAlarxidatascienceacrosstheorganization212

opentext"

Summary

Artificialintelligence(Al)transformsorganizationsbyempoweringthemtomake

moredata-drivendecisionsandeliminatestediousandrepetitiveprocesses.Yet,

manycompaniesstruggletoseehowtodeploytherightAlsolutionfortheir

organization.WhiletheymayhaveageneralunderstandingofwhatAlcando,it

remainsunclearastohowtheycanleveragedatascienceandadvancedanalytics

toimproveefficiency.

ThiswhitepaperwillhelpyouidentifywhetherAlistherightfitforyourorganization

andhowtosetupanAlstructurethataddsvaluetothebusiness.Itoutlinesthe

benefitsofAlfortheenterprise,providesalistofquestionstoaskbeforegetting

startedandoffersguidanceforstructuringahigh-performingdatascienceteam.In

addition,itdetailstheiterativeprocessformanagingasuccessfulAlprojectwitha

comprehensive,step-by-stepguide.

ItalsoprovidesfiveusecasestoalloworganizationstoexplorethepotentialofAl

withintheirownorganizations.

Smartsuccess:IgnitethepowerofAlarxidatascienceacrosstheorganization3”2

opentext"

ThebenefitsofintroducingAl

Withevolvingcustomerdemandsandagrowingsenseofimmediacyaffectingall

industries,businessleadersmustmakedecisionsquickerthanever.Ofcourse,

informeddecisionsarebornfromtheabilitytoanalyzeasmuchdataaspossible,

butcollecting,contextualizing,analyzingandderivinginsightsfromhugevolumesof

informationistootime-consuming.

Machinelearningautomatesthetediouselementsofhumanresearchandreview

toprovidevaluableanalysesandrecommendations,amplifyingtheroleofhuman

employeesacrossbusinessprocesses—noteliminatingit,assomemightfear.

Withthesecapabilities,AI-poweredsolutionscan:

SavetimeDriveHelpyoustayImprove

andmoneyefficiencycompetitivesecurity

Maximizingthebenefitsforyourenterprise

TheAljourneywillbedifferentforeachorganizationbasedonitsassessmentsof

needs,strengths,processes,goals,etc.Itshouldthereforenotbeexpectedthat

allorganizationsadoptAlinthesameway.Considerthefollowingquestionswhen

determiningwhetheranAl-poweredsolutionwillnotonlybefeasible,butalso

beneficial,foryourorganization:

WhatspecificobjectivescanweachievebyintroducingAl?

Alwillonlyyieldorganization-widesuccessifyouareabletolookatitthrough

astrategicbusinesslens—notasanITproject.Thisrequirescross-functional

collaborationtoidentifytheorganization'soverarchingobjectives.Youmightchoose

toimplementtechnologyinawaythatreducesrisk,improvesproductivityorhelps

youmakemoreaccuratepredictions.WhileAlcandoallofthisandmore,starting

withaspecificgoalwillhelpyoudevelopadetailedandactionableplantogetthere.

HowwillAlhelpussecureacompetitiveedge?

IfyouarenotsurehowtoleverageAltohelpsecurebetterperformance,consider

anyindustrytrendsthatmightbetakingshape.Analyzingthedirectionyour

businesslineismovinginshouldhelpyouidentifywaystomeetcustomerdemands

andstaycompetitivewithAl.InFinancialServices,forexample,banksareusing

Altohelpthemmakemoretailoredproductandservicerccommcndationo.

Usecasesfromyoursectorwillalsoprovetobeavaluableresourcetohelpyou

envisiontherightsolutionsforyourneeds.

Doyouhavetherightdata?

Doyouhavedatarelevanttoansweringthebusinessproblem?Howmuchdatado

youhave?Whereisyourdata?Isdatareadilyaccessibleforanalysisandmodelling?

Withtheanswerstothesequestionsinmind,youcanbeginpursuingasuccessful

Alprojectinyourorganization.

Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganization5/12

opentext"

1.DefinetaskKeystageswithinthedatascienceprojectlifecycle

2.CollectdataTheprocessofdevelopingamachinelearningmodelishighlyiterative.Often,you

3.Modelexplorationwillfindyourselfreturningtopreviousstepsbeforeproceedingtoasubsequent

one.Afterall,amachinelearningprojectisnotconsideredcompleteafterthe

4.ModelrefinementfirstversionhasbeendeployedInstead,thefeedbackyoucollectaftertheinitial

5.Testingandevaluationversionwillhelpyoushapenewgoalsandimprovementsforthenextiteration.

6.Deploymentandintegration1.Projectplanning/Definetask

7.ContinuousmaintenanceManyAlprojectsfallshortbecauseorganizationsjumpdirectlyintomodeling

withouttakingthetimetoplan.Startingwithacohesiveplangetseveryoneon

thesamepageandmaypreventroadblocksdowntheroad.Whileitisnotalways

simpletodefineamodeltaskfromthebeginning,brainstormingshouldhelpyou

identifyprojectswithhighpotential,includingthosethatcouldmakeabigimpact,

yetstillbefeasible.Wheremightpredictiondrivethelargestvalue?

Duringthisstep,youshouldalsoestablishwhatkindofdatayouwillneedto

supportyourAlproject,howyouwillacquireitandhowmuchdataisneeded.For

example,ifyouarethinkingofdeployingasolutionforpredictivemaintenanceona

train,youmightpullinformationfromloTsensors,weatherpatternsandpassenger

travelpatterns.

Definetask

Machinelearningdevelopmentlifecycle

2.Dataacquisition/Collectdata

Howyoulabelyourdatacanhaveahugeimpactonmodelperformance.Insome

cases,youmaybeabletouseaself-labelingsystem,butinothers,manually

labelingdatamaybenecessary.Beconsistentinyourlabelingcriteriaandbesure

toassociatespecificmodelswithdatasetversionstoavoidconfusion.

Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganization6/12

opentext"

3.Modelexploration

Todeterminewhetherthemodelsyourdatascientistsarecreatingwillbeeffective,

youmustfirstdeterminebaselinesagainstwhichmodelperformancewillbe

measured.Thebestapproachistostartsmallwithaninitialdatapipeline.Youwill

likelytestmanyideasthroughoutthisstep,butultimately,oneleadingmodelwill

emerge.Youcanreproducetheresultsofthismodel,thenapplyttoyourdataset

forasecondbaseline.Thereafter,youcanrevisitstepsoneandtwotoensureitfits.

4.Modelrefinement

Oncethemodelisinplace,refineitbydebuggingitandperforminganerror

analysistopinpointpotentialfailures.Asyouenhancethemodel,considerthe

followingquestions:

?Canthedatascientistexplaintheirchoicesandaretheyreproducible?

?Howistheaccuracymeasurec?

?Haveyoumeasuredthepotentialprofitsavingsoftheproject?

-Canothersunderstandthenotesandprojectmethodology?

?Whatisthereleaseplanandhowwillyoumeasuresuccess?

?Hasdatasecuritybeenreviewedonthealgorithmsandpipelines?

5.Testingandevaluation

Often,datascientistsfindthat"datainthewild"tendstobedifferentfromthe

datatheyusedfortrainingpurposes.Forthisreason,itisimportanttorevisitthe

metricformodelevaluationtoensurethattheoneyouhavechosenisappropriate

forfacilitatingthedesiredactions.Nowisalsothetimetowritetestsfortheinput

datapipeline,modelinferencefjnctionalityandspecificscenariosexpectedin

production.

6.Deploymentandintegration

Forbestresults,startwithamodeldeploymentamongasmallgroupofusers.If

everythingrunssmoothly,rollitouttoallusers.Youshouldcontinuetomonitorlive

dataandmodelpredictiondistrioutions.

7.Continuousmaintenance

Followingdeployment,besuretoaddressanychangesthatimpactthesystem

andretrainthemodelperiodicallytopreventitfrombecomingwornout.Should

modelownershiptransfer,youshouldensurethatthenewteamisproperly

educatedonthemodel.

Ofcourse,toexecutethesestepseffectively,youmusthavetheproperteaminplace.

Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganization7/12

opentext"

Creatingahigh-performingdatascienceteam

Alprojectsarenotsolosports.Theyrequiretheongoingcontributionsand

collaborationfromanumberofkeyteammembers.Becausedatascienceisan

intersectionofvariousfunctions,includingmathandstatistics,computerscience

andbusinessknowledge,youwillneedadynamicgroupofindividualstoforma

high-performingmachinelearningteam.

Typically,teamsinvolveindividualsfromdatascienceanddataengineering,as

wellassubjectmatterexperts.Hereisalookateachoftheserolesinmoredetail:

Dataengineers:Thesespecialistsaretypicallytaskedwithbuildngthedata

infrastructureofanorganization.Theyhavestrongprogrammingandhardware

skills,arefamiliarwithbigdatatechnologiesandexcelinbuildingdatapipelines.

Theyarenotnecessarilyexpertsinanalyzingandmodellingdatabutshouldbeable

toworkwithrelevantbusinessdivisionstodeterminethedatacharacteristicsfor

eachusecase.

Datascientists:Afteryouhavebuiltoutyourdatainfrastructure,youwill

needpeoplewhocantakethatdata,cleanit,analyzeit,applyalgorithms,

runcxpcrimcntGandcommunicatercGultGeffectively.ThcccprofcGGionalG

typicallyusetools,suchasJupyter'notebookandRStudio?,haveknowledgeof

programminglanguages,suchasRandPython?,andexperienceworkingwithbig

datatechnologies,suchasApacheHadoop?andApacheSpark".haddition,they

haveastrongbackgroundinstatsties,programmingandmachinelearning.

Subjectmatterexperts:Subjectmatterexpertshelpcultivatestrategies,generate

ideasandexaminefactorsnecessaryforsupportingdifferentusecases.They

understandthekeybusinessproblem,processesandchallenges.Theirinput

andknowledgearecrucialinhelpingtheteamdevelopmeaningfulsolutionsthat

providebusinessvalueandovercomechallenges.

Datasciencemanager:Datasciencemanagersarehands-onleaderswhohelpbuild

thefoundationofanorganization'sdatasciencestrategy,recruitandcreatetalent

teams,ensureeffectivecommunicationamongmembersanddevelopprocessesfor

theteamtofollow.Theyareinchargeofconnectingthedatascienceandanalytics

teamwiththerestoftheorganization,otherdivisionsandexecutives.Oneoftheircore

responsibilitiesistotranslatecomplexAlandMLterminologytononexpertsandmake

suretheteamworksinalignmentwiththestrategyoftheoverallorganization.

DataengineeringDatascientistSubjectmatterexperts

?Helpsidentifythe?Cleans,massages?Providesfeedback

rightdatasetsandorganizes(big)dataonoutouts

?Helpsbuildthedata?Appliesdescriptive,?Helpsensureanalysis

infrastructureofpredictiveandprescriptiveisapptopriate/moving

anorganizationanalyticaltechniquestointherightdirection

gaininsights,build

modelsandsolve

abusinessproblem

Datasciencemanager

?Guidestheteam-egardingthebestuseoftoolsandresources

?HelpstranslatecomplexAlandMLterminologyfornon-experts

?Ensurestheteamworksinalignmentwiththestrategyoftheoverallorganization

Datasciencecoreteam

Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganizationai2

opentext"

Thecriticalroleofinternalandexternalpartnerships

Foreffectiveexecution,Almustbebuiltonstrongpartnerships,bothinternallyand

externally.Eachpartyinvolvedmustbealignedwiththeoverarchingdatastrategy

tokeepalleffortsfocusedonthesamegoal.Wheneveryoneisalignedandknows

theirrole,theycanachievereal,measurableresultsfromtheAlpractice.

Internalpartnerships

Notonlyishavingtherightpeopleonyourteamimportant,soisensuringthey

havetheresourcesneededtoadoptAltechnologyandtocollaborate.Tofacilitate

broadAltraining,makesureyojhaveinputfromanAlexpertwhocanguide

yourorganization.Theycanworkwithyourchieflearningofficer(CLO)tofindor

developtrainingmaterials,includingvideotutorialsandcourses.Theorganization

shouldthendevelopproceduresforeachroleinvolvedwithAl,includingexecutive

leaders,businessunitmanagersanddatascientists.

Before,duringandafterdeployment,theremustbeconstantcorrmunication

betweentheAlteamandthebusinessunit.Eachspecialisthasstrengthsand

boundariestotheirskillsets,soworkingwithotherswillbeanessentialaspectof

projectsuccess.Typically,datascientistsordatasciencemanagerswillensure

cross-functionalcollaborationtocreatebusinessvalueandensurecomplexAlterms

arebeingtranslatedtousableinsights.Theseindividualsmustalsoensurethattheir

workisalignedwiththeorganization'soverarchinggoal.ThisiswhereAlsystems

empowerteamstobreakdownsilosandcommunicateinsightsacrossteams.

Externalpartnerships

FindingtherightAlpartnerforyourorganizationisanothercomponent

integraltothesuccessofyourAlpractice.AtrustedAlpartnershojldallowyou

toleverageunderusedyetvaluabledata,allowdatascientiststoworkintheir

familiarenvironments,suchasJupyternotebookandR,andprovidetheability

tooperationalizemodelsinbusiness-friendlyinterfaces.Establishngaproject

managerwhocancollaboratewithyourAlpartnerwill

alsobecriticaltosuccess.

Theimportanceofexecutivebuy-in

OnecommoncauseoffailureamongAlprojectsislackofbuy-in.Wniledatascientists

andsubjectmatterexpertsmaybeabletoseethevalueofAlintheenterprise,

supportmuststartatthetop.CommunicatinghowanAlinvestmentcouldhelpthe

companysavemoneyandpilotingsolutionscanhelpteamsestablishcredibilityand

attractsupportfromleadership.Moreover,explainingmodeloutputsinconciseand

tangibletermscanhelpaccelerateadoptionandbuildtrustamongs:akeholders.

Smartsuccess:IgnitethepowerofAlarxldatascienceacrosstheorganization9/12

opentext"

FiveAlusecasesyourcompanycanconsider:

PoweredbyOpenTextMagellan

Al-augmentedrecommendations

Consumersareinundatedwithfrequentandirrelevantproductoffers.To

understandhowtheycouldbetterservetheircustomers,amajorbankdeployed

acustomizedpersonalizationmodelwithintelligentrecommencations.The

bankimplementedasystemthatharnessesAlandbigdatatomonitorcustomer

actions,predicttheirneedsanddeliverhighlypersonalizedexperiencesacross

everychannel.Withadeeperinsightintocustomerpreferencesandbehaviors,

thebankhasimproveddealsandoffersfromretailpartners.Withfewerannoying

andirrelevantoffers,thecustomerexperiencehasimprovedandthebankhasseen

higherclick-throughandconversionratesontheiroffers.

Intelligentcapture

Whiletraditionalcontentcapturesystemshelpbusinessesmanagetheircontent,

thereisagrowingneedtoautomatetheclassificationandroutingofcontentatscale.

Al-enhancedcapturecanextractinformationfromenterpriseconlentandroute

documentstotheappropriateworkflow.Withthesolution,organizations,suchas

largebanks,canintelligentlyclassifydocumentsandfreeupstafffromsortingthrough

thousandsofincomingdocumentseveryday.

Classification/Smartmigration

FromspreadsheetstoMicrosoft8Worddocumentsandemail,organizationsare

swarmingwithbillionsofpiecesofcontent.Managingthisunstructured,textual

dataisnotoriouslydifficult,butmachinelearningcanhelporganizationscategorize

informationandtriggerprocesses,therebyautomatingknowledgeclassification.

Thisisespeciallybeneficialfororganizationswithsensitivedata,includi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論