郴州市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試題及答案_第1頁(yè)
郴州市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試題及答案_第2頁(yè)
郴州市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試題及答案_第3頁(yè)
郴州市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試題及答案_第4頁(yè)
郴州市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試題及答案_第5頁(yè)
已閱讀5頁(yè),還剩37頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、解答題1.在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD.(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;(3)點(diǎn)P是直線(xiàn)BD上一個(gè)動(dòng)點(diǎn),連接PC、PO,當(dāng)點(diǎn)P在直線(xiàn)BD上運(yùn)動(dòng)時(shí),請(qǐng)直接寫(xiě)出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系2.如圖,已知,是的平分線(xiàn).(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過(guò)點(diǎn)作,分別交、于點(diǎn)、,繞著點(diǎn)旋轉(zhuǎn),但與、始終有交點(diǎn),問(wèn):的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.3.已知:直線(xiàn)AB∥CD,M,N分別在直線(xiàn)AB,CD上,H為平面內(nèi)一點(diǎn),連HM,HN.(1)如圖1,延長(zhǎng)HN至G,∠BMH和∠GND的角平分線(xiàn)相交于點(diǎn)E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線(xiàn)相交于點(diǎn)E.①請(qǐng)直接寫(xiě)出∠MEN與∠MHN的數(shù)量關(guān)系:;②作MP平分∠AMH,NQ∥MP交ME的延長(zhǎng)線(xiàn)于點(diǎn)Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運(yùn)用①中的結(jié)論)4.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動(dòng)點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動(dòng),在動(dòng)點(diǎn)A運(yùn)動(dòng)的過(guò)程中,始終有過(guò)點(diǎn)A的射線(xiàn)AD∥BC.(1)在動(dòng)點(diǎn)A運(yùn)動(dòng)的過(guò)程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請(qǐng)說(shuō)明理由;(3)當(dāng)AC⊥BC時(shí),直接寫(xiě)出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.5.已知:如圖(1)直線(xiàn)AB、CD被直線(xiàn)MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點(diǎn)E在AB,CD之間的直線(xiàn)MN上,P、Q分別在直線(xiàn)AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的結(jié)論;(3)如圖(3),在(2)的條件下,過(guò)P點(diǎn)作PH//EQ交CD于點(diǎn)H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).6.如圖,直線(xiàn)AB∥直線(xiàn)CD,線(xiàn)段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).7.請(qǐng)觀察下列等式,找出規(guī)律并回答以下問(wèn)題.,,,,……(1)按照這個(gè)規(guī)律寫(xiě)下去,第5個(gè)等式是:______;第n個(gè)等式是:______.(2)①計(jì)算:.②若a為最小的正整數(shù),,求:.8.對(duì)數(shù)運(yùn)算是高中常用的一種重要運(yùn)算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對(duì)數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對(duì)數(shù)叫做常用對(duì)數(shù),此時(shí)log10N可記為lgN.當(dāng)a>0,且a≠1,M>0,N>0時(shí),loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計(jì)算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫(xiě)答案)9.閱讀下面的文字,解答問(wèn)題大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用﹣1來(lái)表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)榈恼麛?shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:<<,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2)請(qǐng)解答:(1)整數(shù)部分是,小數(shù)部分是.(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整數(shù),且0<y<1,求x﹣y的相反數(shù).10.閱讀下面的文字,解答問(wèn)題.對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)[a]表示不大于a的最大整數(shù);用{a}表示a減去[a]所得的差.例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法計(jì)算:[]={5﹣}=;(2)若[]=1,寫(xiě)出所有滿(mǎn)足題意的整數(shù)x的值:.(3)已知y0是一個(gè)不大于280的非負(fù)數(shù),且滿(mǎn)足{}=0.我們規(guī)定:y1=[],y2=[],y3=[],…,以此類(lèi)推,直到y(tǒng)n第一次等于1時(shí)停止計(jì)算.當(dāng)y0是符合條件的所有數(shù)中的最大數(shù)時(shí),此時(shí)y0=,n=.11.閱讀材料:求值:,解答:設(shè),將等式兩邊同時(shí)乘2得:,將得:,即.請(qǐng)你類(lèi)比此方法計(jì)算:.其中n為正整數(shù)12.閱讀材料:求的值.解:設(shè)①,將等式①的兩邊同乘以2,得②,用②-①得,即.即.請(qǐng)仿照此法計(jì)算:(1)請(qǐng)直接填寫(xiě)的值為_(kāi)_____;(2)求值;(3)請(qǐng)直接寫(xiě)出的值.13.已知、兩點(diǎn)的坐標(biāo)分別為,,將線(xiàn)段水平向右平移到,連接,,得四邊形,且.(1)點(diǎn)的坐標(biāo)為_(kāi)_____,點(diǎn)D的坐標(biāo)為_(kāi)_____;(2)如圖1,軸于,上有一動(dòng)點(diǎn),連接、,求最小時(shí)點(diǎn)位置及其坐標(biāo),并說(shuō)明理由;(3)如圖2,為軸上一點(diǎn),若平分,且于,.求與之間的數(shù)量關(guān)系.14.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出么的度數(shù).15.如圖,在平面直角坐標(biāo)系中,已知,,,,滿(mǎn)足.平移線(xiàn)段得到線(xiàn)段,使點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),連接,.(1)求,的值,并直接寫(xiě)出點(diǎn)的坐標(biāo);(2)點(diǎn)在射線(xiàn)(不與點(diǎn),重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點(diǎn)的坐標(biāo);②設(shè),,.求,,滿(mǎn)足的關(guān)系式.16.在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn),,如果,則稱(chēng)與互為“距點(diǎn)”.例如:點(diǎn),點(diǎn),由,可得點(diǎn)與互為“距點(diǎn)”.(1)在點(diǎn),,中,原點(diǎn)的“距點(diǎn)”是_____(填字母);(2)已知點(diǎn),點(diǎn),過(guò)點(diǎn)作平行于軸的直線(xiàn).①當(dāng)時(shí),直線(xiàn)上點(diǎn)的“距點(diǎn)”的坐標(biāo)為_(kāi)____;②若直線(xiàn)上存在點(diǎn)的“點(diǎn)”,求的取值范圍.(3)已知點(diǎn),,,的半徑為,若在線(xiàn)段上存在點(diǎn),在上存在點(diǎn),使得點(diǎn)與點(diǎn)互為“距點(diǎn)”,直接寫(xiě)出的取值范圍.17.如圖,在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|y1﹣y2|.(1)填空:已知點(diǎn)A(3,6)與點(diǎn)B(5,2),則點(diǎn)A與點(diǎn)B的“非常距離”為;(2)已知點(diǎn)C(﹣1,2),點(diǎn)D為y軸上的一個(gè)動(dòng)點(diǎn).①若點(diǎn)C與點(diǎn)D的“非常距離”為2,求點(diǎn)D的坐標(biāo);②直接寫(xiě)出點(diǎn)C與點(diǎn)D的“非常距離”的最小值.18.在平面直角坐標(biāo)系中,,滿(mǎn)足.(1)直接寫(xiě)出、的值:;;(2)如圖1,若點(diǎn)滿(mǎn)足的面積等于6,求的值;(3)設(shè)線(xiàn)段交軸于C,動(dòng)點(diǎn)E從點(diǎn)C出發(fā),在軸上以每秒1個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)出發(fā),在軸上以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),若它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為秒,問(wèn)為何值時(shí),有?請(qǐng)求出的值.19.兩個(gè)兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫(xiě)較小的兩位數(shù),得到一個(gè)四位數(shù);在較大的兩位數(shù)的左邊寫(xiě)上較小的兩位數(shù),也得到一個(gè)四位數(shù).已知前一個(gè)四位數(shù)比后一個(gè)四位數(shù)大990.若設(shè)較大的兩位數(shù)為x,較小的兩位數(shù)為y,回答下列問(wèn)題:(1)可得到下列哪一個(gè)方程組?A.B.C.D.(2)解所確定的方程組,求這兩個(gè)兩位數(shù).20.一列快車(chē)長(zhǎng)70米,慢車(chē)長(zhǎng)80米,若兩車(chē)同向而行,快車(chē)從追上慢車(chē)到完全離開(kāi)慢車(chē),所用時(shí)間為20秒.若兩車(chē)相向而行,則兩車(chē)從相遇到離開(kāi)時(shí)間為4秒,求兩車(chē)每秒鐘各行多少米?21.某公園的門(mén)票價(jià)格如下表所示:某中學(xué)七年級(jí)(1)、(2)兩個(gè)班計(jì)劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個(gè)班都以班為單位分別購(gòu)票,則一共應(yīng)付1172元,如果兩個(gè)班聯(lián)合起來(lái),作為一個(gè)團(tuán)體購(gòu)票,則需付1078元.(1)列方程求出兩個(gè)班各有多少學(xué)生;(2)如果兩個(gè)班聯(lián)合起來(lái)買(mǎi)票,是否可以買(mǎi)單價(jià)為9元的票?你有什么省錢(qián)的方法來(lái)幫他們買(mǎi)票呢?請(qǐng)給出最省錢(qián)的方案.22.如圖,已知和的度數(shù)滿(mǎn)足方程組,且.(1)分別求和的度數(shù);(2)請(qǐng)判斷與的位置關(guān)系,并說(shuō)明理由;(3)求的度數(shù).23.在平面直角坐標(biāo)系中,把線(xiàn)段先向右平移h個(gè)單位,再向下平移1個(gè)單位得到線(xiàn)段(點(diǎn)A對(duì)應(yīng)點(diǎn)C),其中分別是第三象限與第二象限內(nèi)的點(diǎn).(1)若,求C點(diǎn)的坐標(biāo);(2)若,連接,過(guò)點(diǎn)B作的垂線(xiàn)l①判斷直線(xiàn)l與x軸的位置關(guān)系,并說(shuō)明理由;②已知E是直線(xiàn)l上一點(diǎn),連接,且的最小值為1,若點(diǎn)B,D及點(diǎn)都是關(guān)于x,y的二元一次方程的解為坐標(biāo)的點(diǎn),試判斷是正數(shù)?負(fù)數(shù)還是0?并說(shuō)明理由.24.閱讀材料:形如的不等式,我們就稱(chēng)之為雙連不等式.求解雙連不等式的方法一,轉(zhuǎn)化為不等式組求解,如;方法二,利用不等式的性質(zhì)直接求解,雙連不等式的左、中、右同時(shí)減去1,得,然后同時(shí)除以2,得.解決下列問(wèn)題:(1)請(qǐng)你寫(xiě)一個(gè)雙連不等式并將它轉(zhuǎn)化為不等式組;(2)利用不等式的性質(zhì)解雙連不等式;(3)已知,求的整數(shù)值.25.某加工廠(chǎng)用52500元購(gòu)進(jìn)A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質(zhì),該加工廠(chǎng)需盡快將這批原料運(yùn)往有保質(zhì)條件的倉(cāng)庫(kù)儲(chǔ)存.經(jīng)市場(chǎng)調(diào)查獲得以下信息:①將原料運(yùn)往倉(cāng)庫(kù)有公路運(yùn)輸與鐵路運(yùn)輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運(yùn)輸方式的運(yùn)輸單價(jià)不同(單價(jià):每噸每千米所收的運(yùn)輸費(fèi));③公路運(yùn)輸時(shí),每噸每千米還需加收1元的燃油附加費(fèi);④運(yùn)輸還需支付原料裝卸費(fèi):公路運(yùn)輸時(shí),每噸裝卸費(fèi)100元;鐵路運(yùn)輸時(shí),每噸裝卸費(fèi)220元.(1)加工廠(chǎng)購(gòu)進(jìn)A、B兩種原料各多少?lài)???)由于每種運(yùn)輸方式的運(yùn)輸能力有限,都無(wú)法單獨(dú)承擔(dān)這批原料的運(yùn)輸任務(wù).加工廠(chǎng)為了盡快將這批原料運(yùn)往倉(cāng)庫(kù),決定將A原料選一種方式運(yùn)輸,B原料用另一種方式運(yùn)輸,哪種方案運(yùn)輸總花費(fèi)較少?請(qǐng)說(shuō)明理由.26.定義:如果一個(gè)兩位數(shù)a的十位數(shù)字為m,個(gè)位數(shù)字為n,且、、,那么這個(gè)兩位數(shù)叫做“互異數(shù)”.將一個(gè)“互異數(shù)”的十位數(shù)字與個(gè)位數(shù)字對(duì)調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對(duì)調(diào)個(gè)位數(shù)字與十位數(shù)字得到新兩位數(shù)41,新兩位數(shù)與原兩位數(shù)的和為,和與11的商為,所以.根據(jù)以上定義,解答下列問(wèn)題:(1)填空:①下列兩位數(shù):20,21,22中,“互異數(shù)”為_(kāi)_______;②計(jì)算:________;________;(m、n分別為一個(gè)兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字)(2)如果一個(gè)“互異數(shù)”b的十位數(shù)字是x,個(gè)位數(shù)字是y,且;另一個(gè)“互異數(shù)”c的十位數(shù)字是,個(gè)位數(shù)字是,且,請(qǐng)求出“互異數(shù)”b和c;(3)如果一個(gè)“互異數(shù)”d的十位數(shù)字是x,個(gè)位數(shù)字是,另一個(gè)“互異數(shù)”e的十位數(shù)字是,個(gè)位數(shù)字是3,且滿(mǎn)足,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的所有x的值________;(4)如果一個(gè)“互異數(shù)”f的十位數(shù)字是,個(gè)位數(shù)字是x,且滿(mǎn)足的互異數(shù)有且僅有3個(gè),則t的取值范圍________.27.閱讀下列材料:?jiǎn)栴}:已知x﹣y=2,且x>1,y<0解:∵x﹣y=2.∴x=y(tǒng)+2,又∵x>1∴y+2>1∴y>﹣1又∵y<0∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2∴x+y的取值范圍是0<x+y<2請(qǐng)按照上述方法,完成下列問(wèn)題:(1)已知x﹣y=3,且x>﹣1,y<0,則x的取值范圍是;x+y的取值范圍是;(2)已知x﹣y=a,且x<﹣b,y>2b,根據(jù)上述做法得到-2<3x-y<10,求a、b的值.28.閱讀材料:如果x是一個(gè)有理數(shù),我們把不超過(guò)x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請(qǐng)你解決下列問(wèn)題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.29.如圖,在長(zhǎng)方形中,為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為且、滿(mǎn)足,點(diǎn)在第一象限內(nèi),點(diǎn)從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著的線(xiàn)路移動(dòng).(1)點(diǎn)的坐標(biāo)為_(kāi)__________;當(dāng)點(diǎn)移動(dòng)5秒時(shí),點(diǎn)的坐標(biāo)為_(kāi)__________;(2)在移動(dòng)過(guò)程中,當(dāng)點(diǎn)到軸的距離為4個(gè)單位長(zhǎng)度時(shí),求點(diǎn)移動(dòng)的時(shí)間;(3)在的線(xiàn)路移動(dòng)過(guò)程中,是否存在點(diǎn)使的面積是20,若存在直接寫(xiě)出點(diǎn)移動(dòng)的時(shí)間;若不存在,請(qǐng)說(shuō)明理由.30.學(xué)校美術(shù)組要去商店購(gòu)買(mǎi)鉛筆和橡皮,若購(gòu)買(mǎi)60支鉛筆和30塊橡皮,則需按零售價(jià)購(gòu)買(mǎi),共支付30元;若購(gòu)買(mǎi)90支鉛筆和60塊橡皮,則可按批發(fā)價(jià)購(gòu)買(mǎi),共支付40.5元.已知每支鉛筆的批發(fā)價(jià)比零售價(jià)低0.05元,每塊橡皮的批發(fā)價(jià)比零售價(jià)低0.10元.(1)求每支鉛筆和每塊橡皮的批發(fā)價(jià)各是多少元?(2)小亮同學(xué)用4元錢(qián)在這家商店按零售價(jià)買(mǎi)同樣的鉛筆和橡皮(兩樣都要買(mǎi),4元錢(qián)恰好用完),共有哪幾種購(gòu)買(mǎi)方案?【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)C(0,2),D(4,2),S四邊形ABDC=8;(2)存在,P(0,4)或(0,﹣4);(3)點(diǎn)p在線(xiàn)段BD上,∠OPC=∠PCD+∠POB;點(diǎn)P在BD延長(zhǎng)線(xiàn)上,∠OPC=∠POB-∠PCD;點(diǎn)P在DB延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),∠OPC=∠PCD-∠POB.【解析】【分析】(1)根據(jù)點(diǎn)平移的規(guī)律易得點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(4,2);四邊形ABDC的面積=2×(3+1)=8;(2)存在.設(shè)點(diǎn)P到AB的距離為h,則S△PAB=×AB×h,根據(jù)S△PAB=S四邊形ABDC,列方程求h的值,確定P點(diǎn)坐標(biāo).(3)分類(lèi)討論:當(dāng)點(diǎn)P在線(xiàn)段BD上,作PM∥AB,根據(jù)平行線(xiàn)的性質(zhì)由MP∥AB得∠2=∠POB,由CD∥AB得到CD∥MF,則∠1=∠PCD,所以∠OPC=∠POB+∠PCD;同樣得到當(dāng)點(diǎn)P在線(xiàn)段DB的延長(zhǎng)線(xiàn)上,∠OPC=∠PCD-∠POB;當(dāng)點(diǎn)P在線(xiàn)段BD的延長(zhǎng)線(xiàn)上,得到∠OPC=∠POB-∠PCD.【詳解】(1)依題意,得C(0,2),D(4,2),∴S四邊形ABDC=AB×OC=4×2=8;(2)在y軸上是存在一點(diǎn)P,使S△PAB=S四邊形ABDC.理由如下:設(shè)點(diǎn)P到AB的距離為h,S△PAB=×AB×h=2h,由S△PAB=S四邊形ABDC,得2h=8,解得h=4,∴P(0,4)或(0,-4).(3)當(dāng)點(diǎn)P在線(xiàn)段BD上,作PM∥AB,如圖1,∵M(jìn)P∥AB,∴∠2=∠POB,∵CD∥AB,∴CD∥MP,∴∠1=∠PCD,∴∠OPC=∠1+∠2=∠POB+∠PCD;當(dāng)點(diǎn)P在線(xiàn)段DB的延長(zhǎng)線(xiàn)上,作PN∥AB,如圖2,∵PN∥AB,∴∠NPO=∠POB,∵CD∥AB,∴CD∥PN,∴∠NPC=∠FCD,∴∠OPC=∠NPC-∠NPO=∠FCD-∠POB;同樣得到當(dāng)點(diǎn)P在線(xiàn)段BD的延長(zhǎng)線(xiàn)上,得到∠OPC=∠POB-∠PCD.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)得到線(xiàn)段的長(zhǎng)和線(xiàn)段與坐標(biāo)軸的關(guān)系.也考查了平行線(xiàn)的性質(zhì)和分類(lèi)討論的思想.2.(1)90°;(2)見(jiàn)解析;(3)不變,180°【分析】(1)根據(jù)鄰補(bǔ)角的定義及角平分線(xiàn)的定義即可得解;(2)根據(jù)垂直的定義及鄰補(bǔ)角的定義、角平分線(xiàn)的定義即可得解;(3),過(guò),分別作,,根據(jù)平行線(xiàn)的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線(xiàn),,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過(guò),分別作,,則有,,,,,,,,,,,,不變.【點(diǎn)睛】此題考查了平行線(xiàn)的性質(zhì),熟記平行線(xiàn)的性質(zhì)及作出合理的輔助線(xiàn)是解題的關(guān)鍵.3.(1)見(jiàn)解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過(guò)點(diǎn)E作EP∥AB交MH于點(diǎn)Q,利用平行線(xiàn)的性質(zhì)、角平分線(xiàn)性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等即可得證.(2)①過(guò)點(diǎn)H作GI∥AB,利用(1)中結(jié)論2∠MEN﹣∠MHN=180°,利用平行線(xiàn)的性質(zhì)、角平分線(xiàn)性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進(jìn)而用等量代換得出2∠MEN+∠MHN=360°.②過(guò)點(diǎn)H作HT∥MP,由①的結(jié)論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線(xiàn)性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線(xiàn)性質(zhì)及鄰補(bǔ)角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過(guò)點(diǎn)E作EP∥AB交MH于點(diǎn)Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過(guò)點(diǎn)H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結(jié)論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過(guò)點(diǎn)H作HT∥MP.如答圖2∵M(jìn)P∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)).∵M(jìn)P平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì),角平分線(xiàn)的性質(zhì),鄰補(bǔ)角,等量代換,角之間的數(shù)量關(guān)系運(yùn)算,輔助線(xiàn)的作法,正確作出輔助線(xiàn)是解題的關(guān)鍵,本題綜合性較強(qiáng).4.(1)是;(2)∠B=∠ACB,證明見(jiàn)解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線(xiàn)的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線(xiàn)可得∠EAD=∠CAD,由平行線(xiàn)的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線(xiàn)的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線(xiàn)的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線(xiàn)和平行線(xiàn)的性質(zhì),熟練掌握角平分線(xiàn)和平行線(xiàn)的有關(guān)性質(zhì)是解題的關(guān)鍵.5.(1)見(jiàn)解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線(xiàn)的性質(zhì)即可證明;(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構(gòu)建方程即可解決問(wèn)題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結(jié)論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點(diǎn)睛】本題考查了平行線(xiàn)的判定與性質(zhì),角平分線(xiàn)的定義等知識(shí).(2)中能正確作出輔助線(xiàn)是解題的關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題的關(guān)鍵.6.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線(xiàn)的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線(xiàn)的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線(xiàn)的性質(zhì)解答.7.(1),;(2)①;②【分析】(1)根據(jù)規(guī)律可得第5個(gè)算式;根據(jù)規(guī)律可得第n個(gè)算式;(2)①根據(jù)運(yùn)算規(guī)律可得結(jié)果.②利用非負(fù)數(shù)的性質(zhì)求出與的值,代入原式后拆項(xiàng)變形,抵消即可得到結(jié)果.【詳解】(1)根據(jù)規(guī)律得:第5個(gè)等式是,第n個(gè)等式是;(2)①,,,;②為最小的正整數(shù),,,,原式,,,,.【點(diǎn)睛】本題主要考查了數(shù)字的變化規(guī)律,發(fā)現(xiàn)規(guī)律,運(yùn)用規(guī)律是解答此題的關(guān)鍵.8.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對(duì)數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對(duì)數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運(yùn)算的題目,解答本題的關(guān)鍵是理解給出的對(duì)數(shù)的定義.9.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范圍,即可得出答案;(2)分別確定出a、b的值,代入原式計(jì)算即可求出值;(3)根據(jù)題意確定出等式左邊的整數(shù)部分得出y的值,進(jìn)而求出y的值,即可求出所求.【詳解】解:(1)∵7﹤﹤8,∴的整數(shù)部分是7,小數(shù)部分是-7.故答案為:7;-7.(2)∵3﹤﹤4,∴,∵2﹤﹤3,∴b=2∴|a-b|+=|-3-2|+=5-+=5(3)∵2﹤﹤3∴11<9+<12,∵9+=x+y,其中x是整數(shù),且0﹤y<1,∴x=11,y=-11+9+=-2,∴x-y=11-(-2)=13-【點(diǎn)睛】本題考查的是無(wú)理數(shù)的小數(shù)部分和整數(shù)部分及其運(yùn)算.估算無(wú)理數(shù)的整數(shù)部分是解題關(guān)鍵.10.(1)2;3﹣;(2)1、2、3;(3)256,4【分析】(1)依照定義進(jìn)行計(jì)算即可;(2)由題可知,,則可得滿(mǎn)足題意的整數(shù)的的值為1、2、3;(3)由,可知,是某個(gè)整數(shù)的平方,又是符合條件的所有數(shù)中最大的數(shù),則,再依次進(jìn)行計(jì)算.【詳解】解:(1)由定義可得,,,.故答案為:2;.(2),,即,整數(shù)的值為1、2、3.故答案為:1、2、3.(3),即,可設(shè),且是自然數(shù),是符合條件的所有數(shù)中的最大數(shù),,,,,,即.故答案為:256,4.【點(diǎn)睛】本題屬于新定義類(lèi)問(wèn)題,主要考查估算無(wú)理數(shù)大小,無(wú)理數(shù)的整數(shù)部分和小數(shù)部分,理解定義內(nèi)容是解題關(guān)鍵.11.(1);(2).【解析】【分析】設(shè),兩邊乘以2后得到關(guān)系式,與已知等式相減,變形即可求出所求式子的值;同理即可得到所求式子的值.【詳解】解:設(shè),將等式兩邊同時(shí)乘2得:,將下式減去上式得:,即,則;設(shè),兩邊同時(shí)乘3得:,得:,即,則.【點(diǎn)睛】本題考查了規(guī)律型:數(shù)字的變化類(lèi),有理數(shù)的混合運(yùn)算,解題的關(guān)鍵是明確題意,運(yùn)用題目中的解題方法,運(yùn)用類(lèi)比的數(shù)學(xué)思想解答問(wèn)題.12.(1)15;(2);(3).【分析】(1)先計(jì)算乘方,即可求出答案;(2)根據(jù)題目中的運(yùn)算法則進(jìn)行計(jì)算,即可求出答案;(3)根據(jù)題目中的運(yùn)算法則進(jìn)行計(jì)算,即可求出答案;【詳解】解:(1);故答案為:15;(2)設(shè)①,把等式①兩邊同時(shí)乘以5,得②,由②①,得:,∴,∴;(3)設(shè)①,把等式①乘以10,得:②,把①+②,得:,∴,∴,∴.【點(diǎn)睛】本題考查了數(shù)字的變化規(guī)律,熟練掌握運(yùn)算法則,熟練運(yùn)用有理數(shù)乘法,以及運(yùn)用消項(xiàng)的思想是解題的關(guān)鍵.13.(1),;(2),理由見(jiàn)解析;(3)【分析】(1)根據(jù)已知條件求出AD和BC的長(zhǎng)度,即可得到D、C的坐標(biāo);(2)連接BD與直線(xiàn)CG相交,其交點(diǎn)Q即為所求,然后根據(jù)求出QC、QG后即可得到Q點(diǎn)坐標(biāo);(3)過(guò)H作HF∥AB,過(guò)C作CM∥ED,則根據(jù)已知條件、平行線(xiàn)的性質(zhì)和角的有關(guān)知識(shí)可以得到.【詳解】(1)解:由題意可得四邊形ABCD是平行四邊形,且AD與BC間距離為1-(-1)=2,∴平行四邊形ABCD的高為2,∴AD=BC=S四邊形ABCD÷2=12÷2=6,∴C點(diǎn)坐標(biāo)為(-4+6,-1)即(2,-1),D點(diǎn)坐標(biāo)為(-2+6,1)即(4,1);(2)解:如圖,連接交于,∵,∴此時(shí)最?。▋牲c(diǎn)之間,線(xiàn)段最短),過(guò)作于,∵,,,∴,,,設(shè),∴,,,又∵,∴,∴,∴,∴.(3)∵,,∴,,∴.∵平分,∴.又∵,設(shè),則,∴,,過(guò)作,又∵,∴,∴,∴.過(guò)作,∴,.∵于,∴,∴,∴,又∵,∴.【點(diǎn)睛】本題考查平行線(xiàn)的綜合應(yīng)用,熟練掌握平行線(xiàn)的判定與性質(zhì)、平移坐標(biāo)變換規(guī)律、兩點(diǎn)之間線(xiàn)段最短的性質(zhì)、角的有關(guān)知識(shí)和運(yùn)算是解題關(guān)鍵.14.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.【分析】(1)過(guò)E作EHAB,易得EHABCD,根據(jù)平行線(xiàn)的性質(zhì)可求解;過(guò)F作FHAB,易得FHABCD,根據(jù)平行線(xiàn)的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線(xiàn)的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線(xiàn)的性質(zhì)及角平分線(xiàn)的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過(guò)F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線(xiàn)的性質(zhì)及角平分線(xiàn)的定義,作輔助線(xiàn)是解題的關(guān)鍵.15.(1);(2)①或;②點(diǎn)在B點(diǎn)左側(cè)時(shí),;點(diǎn)在B點(diǎn)右側(cè)時(shí),.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)分別求出、,根據(jù)平移規(guī)律得到平移方式,再由平移的坐標(biāo)變化規(guī)律求出點(diǎn)的坐標(biāo);(2)①設(shè),根據(jù)三角形的面積公式列出方程,解方程求出,得到點(diǎn)P的坐標(biāo);②分點(diǎn)點(diǎn)在B點(diǎn)左側(cè)、點(diǎn)在B點(diǎn)右側(cè)時(shí),過(guò)點(diǎn)P作,根據(jù)平行線(xiàn)的性質(zhì)解答.【詳解】解:(1),,,,解得,,.,,平移線(xiàn)段得到線(xiàn)段,使點(diǎn)與點(diǎn)對(duì)應(yīng),∴平移線(xiàn)段向上平移4個(gè)單位,再向右平移2個(gè)單位得到線(xiàn)段,∴,即;(2)①設(shè),∵線(xiàn)段平移得到線(xiàn)段,∴,∵,∵,∴,∵,∴解得,當(dāng)P在B點(diǎn)左側(cè)時(shí),坐標(biāo)為(1,0),當(dāng)P在B點(diǎn)右側(cè)時(shí),坐標(biāo)為(7,0),或;②I、點(diǎn)在射線(xiàn)(不與點(diǎn),重合)上,點(diǎn)在B點(diǎn)左側(cè)時(shí),,,滿(mǎn)足的關(guān)系式是.理由如下:如圖1,過(guò)點(diǎn)作,,∴,由平移得到,點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),,∴∴,;即,II、如圖2,點(diǎn)在射線(xiàn)(不與點(diǎn),重合)上,點(diǎn)在B點(diǎn)右側(cè)時(shí),,,滿(mǎn)足的關(guān)系式是.同①的方法得,,,;即:綜上所述:點(diǎn)在B點(diǎn)左側(cè)時(shí),.點(diǎn)在B點(diǎn)右側(cè)時(shí),.【點(diǎn)睛】本題考查了坐標(biāo)與圖形平移的關(guān)系,坐標(biāo)與平行四邊形性質(zhì)的關(guān)系,平行線(xiàn)的性質(zhì)及三角形、平行四邊形的面積公式.關(guān)鍵是理解平移規(guī)律,作平行線(xiàn)將相關(guān)角進(jìn)行轉(zhuǎn)化.16.(1);(2)①;②;(3).【分析】(1)根據(jù)定義判斷即可;(2)①設(shè)直線(xiàn)上與點(diǎn)的“距點(diǎn)”的點(diǎn)的坐標(biāo)為(a,3),根據(jù)定義列出關(guān)于a的方程,解方程即可;②點(diǎn)坐標(biāo)為,直線(xiàn)上點(diǎn)的縱坐標(biāo)為b,由題意得,轉(zhuǎn)化為不等式組,解不等式組即可.(3)分類(lèi)討論,分別取P與點(diǎn)M重合、P與點(diǎn)N重合討論。當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),設(shè)⊙C左側(cè)與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是(m-,0),根據(jù)定義列出關(guān)于m的絕對(duì)值方程,解方程,取較小的值;當(dāng)點(diǎn)P與點(diǎn)N重合時(shí),設(shè)⊙C右側(cè)與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是(m+,0),根據(jù)定義列出關(guān)于m的絕對(duì)值方程,解方程,取較大的值,問(wèn)題得解.【詳解】解:(1)∵,O(0,0),∴,∴點(diǎn)D與原點(diǎn)互為“距點(diǎn)”;∵,O(0,0),∴,所以點(diǎn)D與原點(diǎn)互為“距點(diǎn)”;∵,O(0,0),∴,所以點(diǎn)D與原點(diǎn)互為“距點(diǎn)”;故答案為:;(2)①設(shè)直線(xiàn)上與點(diǎn)的“距點(diǎn)”的點(diǎn)的坐標(biāo)為(a,3),則,解得a=2故答案為(2,3);②如圖,點(diǎn)坐標(biāo)為,直線(xiàn)上點(diǎn)的縱坐標(biāo)為b,設(shè)直線(xiàn)上點(diǎn)的坐標(biāo)為(c,b)則:,∴,∴,∴,即的取值范圍是;(3)如圖(1),當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),設(shè)⊙C左側(cè)與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是(m-,0),∵點(diǎn)P與點(diǎn)Q互為“5-距點(diǎn)",P(1,2),∴,解得:,;∵,∴?。?dāng)點(diǎn)P與點(diǎn)N重合時(shí),設(shè)⊙C右側(cè)與x軸交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是(m+,0),∵點(diǎn)P與點(diǎn)Q互為“5-距點(diǎn)",則P(3,2),∴,解得:,,∵∴取∴.【點(diǎn)睛】本題為新定義題型,關(guān)鍵要讀懂題目中給出的新概念,建立模型,并結(jié)合所學(xué)知識(shí)解決即可.17.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點(diǎn)在軸上所以橫坐標(biāo)為0,,所以點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,可得點(diǎn)坐標(biāo),(3)已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,縱坐標(biāo)差的絕對(duì)是個(gè)動(dòng)點(diǎn)問(wèn)題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點(diǎn)與點(diǎn)的“非常距離”為4.故答案為:4.(2)①點(diǎn)在軸上所以橫坐標(biāo)為0,點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,設(shè)點(diǎn)的縱坐標(biāo)為,,解得或,點(diǎn)的坐標(biāo)為或,故點(diǎn)的坐標(biāo)為或;②最小值為1,理由為已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,,設(shè)點(diǎn)的縱坐標(biāo)為,當(dāng)時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為1,當(dāng)或時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為.,點(diǎn)與點(diǎn)的“非常距離”的最小值為1,故點(diǎn)與點(diǎn)的“非常距離”的最小值為1.【點(diǎn)睛】本題考查了直角坐標(biāo)系坐標(biāo)結(jié)合絕對(duì)值的應(yīng)用,是新定義問(wèn)題,難點(diǎn)在于第三問(wèn)的動(dòng)點(diǎn)位置取值范圍討論,需要學(xué)生根據(jù)題意正確討論.18.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)過(guò)點(diǎn)作直線(xiàn)軸,延長(zhǎng)交于,設(shè)出點(diǎn)坐標(biāo),根據(jù)面積關(guān)系求出點(diǎn)坐標(biāo),再求出的長(zhǎng)度,即可求出值;(3)先根據(jù)求出點(diǎn)坐標(biāo),再根據(jù)面積關(guān)系求出值即可.【詳解】解:(1),,,,,故答案為,2;(2)如圖1,過(guò)作直線(xiàn)垂直于軸,延長(zhǎng)交直線(xiàn)于點(diǎn),設(shè)的坐標(biāo)為,過(guò)作交直線(xiàn)于點(diǎn),連接,,,,解得,,,又點(diǎn)滿(mǎn)足的面積等于6,,解得或;(3)如圖2,延長(zhǎng)交軸于,過(guò)作軸于,過(guò)作軸于,,,解得,,,,解得,,,,由題知,當(dāng)秒時(shí),,,,,,,,解得或2.【點(diǎn)睛】本題是三角形綜合題,考查三角形的面積,熟練掌握直角坐標(biāo)系的知識(shí),三角形的面積,梯形面積等知識(shí)是解題的關(guān)鍵.19.(1)C;(2)39和29【分析】(1)首先設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意可得等量關(guān)系:①兩個(gè)兩位數(shù)的和為68,②比大990,根據(jù)等量關(guān)系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意,得故選:C;(2)化簡(jiǎn)得,①+②,得,即.①-②,得,即.所以這兩個(gè)數(shù)分別是39和29.【點(diǎn)睛】此題主要考查了由實(shí)際問(wèn)題抽象出二元一次方程組和解二元一次方程組,關(guān)鍵是弄清題目意思,表示出“較小的兩位數(shù)寫(xiě)在較大的兩位數(shù)的右邊,得到一個(gè)四位數(shù)為”,把較小的兩位數(shù)寫(xiě)在較大的兩位數(shù)的左邊,得到另一個(gè)四位數(shù)為.20.快車(chē)每秒行米,慢車(chē)每秒行米.【分析】設(shè)快車(chē)每秒行米,慢車(chē)每秒行米,根據(jù)若兩車(chē)同向而行,快車(chē)從追上慢車(chē)到完全離開(kāi)慢車(chē),所用時(shí)間為20秒.若兩車(chē)相向而行,則兩車(chē)從相遇到離開(kāi)時(shí)間為4秒,列出方程組,解方程組即可求得.【詳解】設(shè)快車(chē)每秒行米,慢車(chē)每秒行米,根據(jù)題意得,解得答:快車(chē)每秒行米,慢車(chē)每秒行米.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,根據(jù)題意列出方程組是解題的關(guān)鍵.21.(1)七(1)班有47人,七(2)班有51人;(2)如果兩個(gè)班聯(lián)合起來(lái)買(mǎi)票,不可以買(mǎi)單價(jià)為9元的票,省錢(qián)的方法,可以買(mǎi)101張票,多余的作廢即可【解析】【分析】(1)由兩個(gè)班聯(lián)合起來(lái),作為一個(gè)團(tuán)體購(gòu)票,則需付1078元可知:可得票價(jià)不是9元,所以?xún)蓚€(gè)班的總?cè)藬?shù)沒(méi)有超過(guò)100人,設(shè)七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來(lái)作為一個(gè)團(tuán)體購(gòu)票,則每張票11元,省錢(qián)的方法,可以買(mǎi)101張票,多余的作廢即可?!驹斀狻拷猓海?)∵兩個(gè)班聯(lián)合起來(lái),作為一個(gè)團(tuán)體購(gòu)票,則需付1078元有∵可得票價(jià)不是9元,所以?xún)蓚€(gè)班的總?cè)藬?shù)沒(méi)有超過(guò)100人,∴設(shè)七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因?yàn)?7+51=98<100∴如果兩個(gè)班聯(lián)合起來(lái)買(mǎi)票,不可以買(mǎi)單價(jià)為9元的票∴省錢(qián)的方法,可以買(mǎi)101張票,多余的作廢即可??墒。骸军c(diǎn)睛】熟練掌握二元一次方程組的實(shí)際問(wèn)題是解題的關(guān)鍵。22.(1);(2),理由詳見(jiàn)解析;(3)40°【分析】(1)利用加減消元法,通過(guò)解二元一次方程組可求出和的度數(shù);(2)利用求得的和的度數(shù)可得到,于是根據(jù)平行線(xiàn)的判定可判斷AB∥EF,然后利用平行的傳遞性可得到AB∥CD;(3)先根據(jù)垂直的定義得到,再根據(jù)平行線(xiàn)的性質(zhì)計(jì)算的度數(shù).【詳解】解(1)解方程組,①-②得:,解得:把代入②得:解得:;(2),理由:∵,,,(同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行),又,;(3),.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì)與判定、解二元一次方程組,熟練掌握平行線(xiàn)的性質(zhì)和判定定理是解題關(guān)鍵.23.(1)(-1,-2);(2)①結(jié)論:直線(xiàn)l⊥x軸.證明見(jiàn)解析;②結(jié)論:(s-m)+(t-n)=0.證明見(jiàn)解析【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.(2)①求出A,D的縱坐標(biāo),證明AD∥x軸,可得結(jié)論.②判斷出D(m+1,n-1),利用待定系數(shù)法,構(gòu)建方程組解決問(wèn)題即可.【詳解】解:(1),又,,,,,點(diǎn)先向右平移2個(gè)單位,再向下平移1個(gè)單位得到點(diǎn),.(2)①結(jié)論:直線(xiàn)軸.理由:,,,向右平移個(gè)單位,再向下平移1個(gè)單位得到點(diǎn),,,的縱坐標(biāo)相同,軸,直線(xiàn),直線(xiàn)軸.②結(jié)論:.理由:是直線(xiàn)上一點(diǎn),連接,且的最小值為1,,點(diǎn),及點(diǎn)都是關(guān)于,的二元一次方程的解為坐標(biāo)的點(diǎn),,①②得到,,③②得到,,,,.【點(diǎn)睛】本題考查坐標(biāo)與圖形變化-平移,非負(fù)數(shù)的性質(zhì),待定系數(shù)法等知識(shí),解題的關(guān)鍵是熟練掌握平移變換的性質(zhì),學(xué)會(huì)利用參數(shù)解決問(wèn)題,屬于中考??碱}型.24.(1)見(jiàn)解析;(2);(3)或【分析】(1),轉(zhuǎn)化為不等式組;(2)根據(jù)方法二的步驟解答即可;(3)根據(jù)方法二的步驟解答,得出,即可得到結(jié)論.【詳解】解:(1),轉(zhuǎn)化為不等式組;(2),不等式的左、中、右同時(shí)減去3,得,同時(shí)除以,得;(3),不等式的左、中、右同時(shí)乘以3,得,同時(shí)加5,得,的整數(shù)值或.【點(diǎn)睛】本題考查了解一元一次不等式組,參照方法二解不等式組是解題的關(guān)鍵,應(yīng)用的是不等式的性質(zhì).25.(1)加工廠(chǎng)購(gòu)進(jìn)A種原料25噸,B種原料15噸;(2)當(dāng)m﹣n<0,即a<b時(shí),方案一運(yùn)輸總花費(fèi)少,當(dāng)m﹣n=0,即a=b時(shí),兩種運(yùn)輸總花費(fèi)相等,當(dāng)m﹣n>0,即a>b時(shí),方案二運(yùn)輸總花費(fèi)少,見(jiàn)解析【分析】(1)設(shè)加工廠(chǎng)購(gòu)進(jìn)種原料噸,種原料噸,由題意:某加工廠(chǎng)用52500元購(gòu)進(jìn)、兩種原料共40噸,其中原料每噸1500元,原料每噸1000元.列方程組,解方程組即可;(2)設(shè)公路運(yùn)輸?shù)膯蝺r(jià)為元,鐵路運(yùn)輸?shù)膯蝺r(jià)為元,有兩種方案,方案一:原料公路運(yùn)輸,原料鐵路運(yùn)輸;方案二:原料鐵路運(yùn)輸,原料公路運(yùn)輸;設(shè)方案一的運(yùn)輸總花費(fèi)為元,方案二的運(yùn)輸總花費(fèi)為元,分別求出、,再分情況討論即可.【詳解】解:(1)設(shè)加工廠(chǎng)購(gòu)進(jìn)種原料噸,種原料噸,由題意得:,解得:,答:加工廠(chǎng)購(gòu)進(jìn)種原料25噸,種原料15噸;(2)設(shè)公路運(yùn)輸?shù)膯蝺r(jià)為元,鐵路運(yùn)輸?shù)膯蝺r(jià)為元,根據(jù)題意,有兩種方案,方案一:原料公路運(yùn)輸,原料鐵路運(yùn)輸;方案二:原料鐵路運(yùn)輸,原料公路運(yùn)輸;設(shè)方案一的運(yùn)輸總花費(fèi)為元,方案二的運(yùn)輸總花費(fèi)為元,則,,,當(dāng),即時(shí),方案一運(yùn)輸總花費(fèi)少,即原料公路運(yùn)輸,原料鐵路運(yùn)輸,總花費(fèi)少;當(dāng),即時(shí),兩種運(yùn)輸總花費(fèi)相等;當(dāng),即時(shí),方案二運(yùn)輸總花費(fèi)少,即原料鐵路運(yùn)輸,原料公路運(yùn)輸,總花費(fèi)少.【點(diǎn)睛】本題考查了一元一次不等式的應(yīng)用、二元一次方程組的應(yīng)用等知識(shí);解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,列出二元一次方程組;(2)找出數(shù)量關(guān)系,列出一元一次不等式或一元一次方程.26.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互異數(shù)”的定義可得;②根據(jù)定義計(jì)算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程組,即可求x和y;(3)根據(jù)題意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根據(jù)“互異數(shù)”f的十位數(shù)字是x+4,個(gè)位數(shù)字是x,分類(lèi)討論f,根據(jù)滿(mǎn)足W(f)<t的互異數(shù)有且僅有3個(gè),求出t的取值范圍.【詳解】解:(1)①∵如果一個(gè)兩位數(shù)a的十位數(shù)字為m,個(gè)位數(shù)字為n,且m≠n、m≠0、n≠0,那么這個(gè)兩位數(shù)叫做“互異數(shù)”,∴“互異數(shù)”為21,故答案為:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;故答案為:9,m+n;(2)∵W(10m+n)=(10m+n+10n+m)÷11=m+n,且W(b)=7,∴x+y=7①,∵W(c)=13,∴x+2+2y-1=13②,聯(lián)立①②解得,故b=10×2+5=25,c=10×(2+2)+2×5-1=49;(3)∵W(d)+W(e)<25,∴x+x+3+(x-2+3)<25,

解得x<7,∵x-2>0,x+3<9,∴2<x<6,∴2<x<6,且x為正整數(shù),∴x=3,4,5,當(dāng)x=5時(shí)e為33不是互異數(shù),舍去,故答案為:3或4;(4)當(dāng)x=0時(shí),x+4=4,此時(shí)f為40不是互異數(shù);當(dāng)x=1時(shí),x+4=5,此時(shí)f為51是互異數(shù),W(f)=x+4+x=2x+4=6;當(dāng)x=2時(shí),x+4=6,此時(shí)f為62是互異數(shù),W(f)=x+4+x=2x+4=8;當(dāng)x=3時(shí),x+4=7,此時(shí)f為73是互異數(shù),W(f)=x+4+x=2x+4=10;當(dāng)x=4時(shí),x+4=8,此時(shí)f為84是互異數(shù),W(f)=x+4+x=2x+4=12;∵滿(mǎn)足W(f)<t的互異數(shù)有且僅有3個(gè),∴10<t≤

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論