強化訓練京改版數(shù)學9年級上冊期末試題及參考答案詳解AB卷_第1頁
強化訓練京改版數(shù)學9年級上冊期末試題及參考答案詳解AB卷_第2頁
強化訓練京改版數(shù)學9年級上冊期末試題及參考答案詳解AB卷_第3頁
強化訓練京改版數(shù)學9年級上冊期末試題及參考答案詳解AB卷_第4頁
強化訓練京改版數(shù)學9年級上冊期末試題及參考答案詳解AB卷_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,在中,,,將繞點C順時針旋轉(zhuǎn)得到,點在上,交于F,則圖中與相似的三角形有(不再添加其他線段)(

)A.1個 B.2個 C.3個 D.4個2、如圖,將一張寬為2cm的長方形紙片沿AB折疊成如圖所示的形狀,那么折痕AB的長為(

)cmA. B. C.2 D.3、如圖,點D、E分別在△ABC的邊BA、CA的延長線上,且DE∥BC,已知AE=3,AC=6,AD=2,則BD的長為()A.4 B.6 C.7 D.84、如圖,正比例函數(shù)和反比例函數(shù)的圖象在第一象限交于點且則的值為(

)A. B. C. D.5、由二次函數(shù),可知(

)A.其圖象的開口向下 B.其圖象的對稱軸為直線x=-3C.其最小值為1 D.當x<3時,y隨x的增大而增大6、如圖,PAB為⊙O的割線,且PA=AB=3,PO交⊙O于點C,若PC=2,則⊙O的半徑的長為()A. B. C. D.7二、多選題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,∠C=90°,AB=5cm,cosB=.動點D從點A出發(fā)沿著射線AC的方向以每秒1cm的速度移動,動點E從點B出發(fā)沿著射線BA的方向以每秒2cm的速度移動.已知點D和點E同時出發(fā),設(shè)它們運動的時間為t秒,連接BD.下列結(jié)論正確的有()A.BC=4cm;B.當AD=AB時,tan∠ABD=2;C.以點B為圓心、BE為半徑畫⊙B,當t=時,DE與⊙B相切;D.當∠CBD=∠ADE時,t=.2、如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.則下列結(jié)論中正確的是()A.∠BAD=∠ABC B.GP=GD C.點P是△ACQ的外心 D.AP?AD=CQ?CB3、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點P是邊BC上的動點,若△ABP與△CDP相似,則BP=(

)A.3.6B.C.D.2.44、下列說法中,正確的是(

)A.兩角對應相等的兩個三角形相似B.兩邊對應成比例的兩個三角形相似C.兩邊對應成比例且夾角相等的兩個三角形相似D.三邊對應成比例的兩個三角形相似5、如圖,反比例函數(shù)與一次函數(shù)的圖象交于A,B兩點,一次函數(shù)的圖象經(jīng)過點A.下列結(jié)論正確的是(

)A.B.點B的坐標為C.連接OB,則D.點C為y軸上一動點,當△ABC的周長最小時,點C的坐標是6、如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點G,連接AG交BE于點H,連接DH,下列結(jié)論中正確的是(

A.△ABG∽△FDG B.HD平分∠EHG C.AG⊥BED.S△HDG:S△HBG=tan∠DAGE.線段DH的最小值是2﹣27、下列四組圖形中,是相似圖形的是(

)A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.2、如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.3、如圖,在RT△ABC中,,,,是斜邊上方一點,連接,點是的中點,垂直平分,交于點,連接,交于點,當為直角三角形時,線段的長為________.4、已知二次函數(shù),當x=_______時,y取得最小值.5、如圖,在RT△ABC中,,點D是的中點,過點D作,垂足為點E,連接,若,,則________.6、二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點的坐標(x,y)對應值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對稱軸是___________7、在平面直角坐標系中,已知拋物線y=mx-2mx+m-2(m>0).(1)拋物線的頂點坐標為_________;(2)點M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物線上的兩點,若y1<y2,x2-x1=2,則y2的取值范圍為_________(用含m的式子表示)四、解答題(6小題,每小題10分,共計60分)1、內(nèi)接于⊙O,在劣弧上,連交于,連,.(1)如圖1,求證:;(2)如圖2,平分,求證:;(3)如圖3,在(2)條件下,點在延長線上,連,于,,,,求⊙O半徑的長.2、已知關(guān)于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關(guān)系;(3)若將拋物線沿軸翻折得到新拋物線,當時,新拋物線對應的函數(shù)有最小值3,求的值.3、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).4、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當直線l與這個新圖象有且只有一個公共點時,d=;(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.5、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?6、某超市經(jīng)銷一種商品,每件成本為50元.經(jīng)市場調(diào)研,當該商品每件的銷售價為60元時,每個月可銷售300件,若每件的銷售價每增加1元,則每個月的銷售量將減少10件.設(shè)該商品每件的銷售價為x元,每個月的銷售量為y件.(1)求y與x的函數(shù)表達式;(2)當該商品每件的銷售價為多少元時,每個月的銷售利潤最大?最大利潤是多少?-參考答案-一、單選題1、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)及相似三角形的判定方法進行分析,找出存在的相似三角形即可.【詳解】根據(jù)題意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4個故選D.【考點】考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.2、A【解析】【分析】作點A作,交BC于點D,作點B作,交AC于點E,根據(jù)長方形紙條的寬得出,繼而可證明是等邊三角形,則有,然后在直角三角形中利用銳角三角函數(shù)即可求出AB的值.【詳解】作點A作,交BC于點D,作點B作,交AC于點E,∵長方形的寬為2cm,,,.∴是等邊三角形,故選:A.【考點】本題主要考查等邊三角形的判定及性質(zhì),銳角三角函數(shù),掌握等邊三角形的判定及性質(zhì)和特殊角的三角函數(shù)值是解題的關(guān)鍵.3、B【解析】【分析】只需要證明△AED∽△ACB即可求解.【詳解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴∴∴BD=AD+AB=2+4=6.故選B.【考點】本題主要考查了平行線的性質(zhì),相似三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.4、D【解析】【分析】根據(jù)點在直線正比例函數(shù)上,則它的坐標應滿足直線的解析式,故點的坐標為.再進一步利用了勾股定理,求出點的坐標,根據(jù)待定系數(shù)法進一步求解.【詳解】解:作軸于.設(shè)A點坐標為,在中,即,解得(舍去)、;∴點坐標為,將代入數(shù)得:.故選:.【考點】此題考查了正比例函數(shù)圖象上點的坐標特征和用待定系數(shù)法求函數(shù)解析式,構(gòu)造直角三角形求出點A坐標是解題關(guān)鍵,構(gòu)思巧妙,難度不大.5、C【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),直接根據(jù)的值得出開口方向,再利用頂點坐標的對稱軸和增減性,分別分析即可.【詳解】解:由二次函數(shù),可知:.,其圖象的開口向上,故此選項錯誤;.其圖象的對稱軸為直線,故此選項錯誤;.其最小值為1,故此選項正確;.當時,隨的增大而減小,故此選項錯誤.故選:.【考點】此題主要考查了二次函數(shù)的性質(zhì),同學們應根據(jù)題意熟練地應用二次函數(shù)性質(zhì),這是中考中考查重點知識.6、A【解析】【分析】延長PO到E,延長線與圓O交于點E,連接EB,AC,根據(jù)四邊形ACEB為圓O的內(nèi)接四邊形,利用圓內(nèi)接四邊形的外角等于它的內(nèi)對角得到一對角相等,再由公共角相等,利用兩對對應角相等的兩三角形相似,可得出三角形ACP與三角形EBP相似,由相似得比例,進而可求得答案.【詳解】延長PO到E,延長線與圓O交于點E,連接EB,AC,∵四邊形ACEB為圓O的內(nèi)接四邊形,∴∠ACP=∠E,又∠P=∠P,∴△ACP∽△EBP,∴PA:PE=PC:PB,∴PA?PB=PC?PE,∵PA=AB=3,∴PB=6,又PC=2,∴3×6=2PE,∴PE=9,∴CE=9-2=7,∴半徑=3.5.【考點】此題考查了圓內(nèi)接四邊形的性質(zhì),相似三角形的判定與性質(zhì),利用了轉(zhuǎn)化思想,其中作出如圖所示的輔助線是解本題的關(guān)鍵.二、多選題1、AB【解析】【分析】A.根據(jù)AB=5cm,cosB=即可求出BC的長度;B.由AD=AB,可得∠ABD=∠D,根據(jù)勾股定理求出AC的長度,然后在Rt△BCD中,即可求出tan∠ABD=tan∠D=2;C.根據(jù)DE與⊙B相切時,DE⊥BE,可得cos∠A=,代入即可求出運動的時間t的值,即可判斷;D.根據(jù)題意可得滿足條件的t的值應該有兩個,進而可判斷.【詳解】A、在△ABC中,∵∠ACB=90°,AB=5cm,cosB=,∴,∴BC=AB?cos∠ABC=5×=4(cm),故A正確.B、在直角△ABC中,AC==3(cm),當AD=AB=5時,∠ABD=∠D,如圖1,∴CD=AD﹣AC=5﹣3=2(cm),在Rt△BCD中,tan∠D==2,∴tan∠ABD=tan∠D=2,故B正確,C、如圖,當DE與⊙B相切時,DE⊥BE.則有cos∠A=,∴,∴t=,當t=時,DE與⊙B相切;故C錯誤.D、滿足條件的t的值應該有兩個,顯然D錯誤,故答案為:AB.【考點】此題考查了三角形動點問題,解直角三角形,圓切線的性質(zhì)和判定,解題的關(guān)鍵是正確分析題目中的等量關(guān)系列出方程求解.2、BCD【解析】【分析】A錯誤,假設(shè)成立,推出矛盾即可;B正確.想辦法證明即可;C正確.想辦法證明即可;D正確.證明,可得,證明,可得,證明,可得,由此即可解決問題;【詳解】解:A錯誤,假設(shè),則,,,顯然不可能,故A錯誤.B正確.連接.是切線,,,,,,,,,故B正確.C正確.,,,,,,是直徑,,,,,,,點是的外心.故C正確.D正確.連接.,,,,,,,,可得,,,,可得,.故D正確,故選:BCD.【考點】本題考查相似三角形的判定和性質(zhì)、垂徑定理、圓周角定理、切線的性質(zhì)等知識,解題的關(guān)鍵是正確現(xiàn)在在相似三角形解決問題,屬于中考選擇題中的壓軸題.3、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計算出結(jié)果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點】本題考查相似三角形得的性質(zhì)與應用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關(guān)鍵.4、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A

“兩角對應相等的兩個三角形相似”是正確的;B

“兩邊對應成比例的兩個三角形相似”是錯誤的,還需添上條件“且夾角相等”才成立;C

“兩邊對應成比例且夾角相等的兩個三角形相似”是正確的;D

“三邊對應成比例的兩個三角形相似”是正確的故選:ACD【考點】本題考查了相似三角形的判定定理,做題的關(guān)鍵是熟練掌握相似三角形的判定定理.5、AC【解析】【分析】聯(lián)立求得的坐標,然后根據(jù)待定系數(shù)法即可求解反比例函數(shù)解析式,然后可得點B的坐標,則有根據(jù)割補法進行求解三角形面積,進而根據(jù)軸對稱的性質(zhì)可求解當△ABC的周長最小時點C的坐標【詳解】解:聯(lián)立,解得,點坐標為.將代入,得..反比例函數(shù)的表達式為;∴聯(lián)立,解得或..在中,令,得.故直線與軸的交點為.如圖,過、兩點分別作軸的垂線,交軸于、兩點,則.過點A作y軸的對稱點D,連接BD,交y軸于點C,此時△ABC的周長為最小,如圖所示:∴,設(shè)直線BD的解析式為,則有:,解得:,∴直線BD的解析式為,令x=0時,則有,∴;綜上所述:正確的有AC選項;故選AC【考點】本題考查了反比例函數(shù)與一次函數(shù)的交點,體現(xiàn)了方程思想,數(shù)形結(jié)合是解題的關(guān)鍵.6、ACDE【解析】【分析】首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),相似三角形的判定與性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,‘∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠ABE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故選項C正確;同法可證:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故選項A正確;∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故選項D正確;取AB的中點O,連接OD、OH,∵正方形的邊長為4,∴AO=OH=×4=2,由勾股定理得,OD==2,∵DH≥OD-OH,∴O、D、H三點共線時,DH最小,∴DH最小=2-2.故選項E正確,無法證明DH平分∠EHG,故選項B錯誤,故選項ACDE正確,故選:ACDE.【考點】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,三角函數(shù),勾股定理、等高模型等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,難點在于選項E作輔助線并確定出DH最小時的情況.7、ABC【解析】【分析】根據(jù)相似圖形的定義,對選項進行一一分析,排除錯誤答案.【詳解】解:A、形狀相同,但大小不同,符合相似形的定義,故符合題意;B、形狀相同,但大小不同,符合相似形的定義,故符合題意;C、形狀相同,但大小不同,符合相似形的定義,故符合題意;D、形狀不相同,不符合相似形的定義,故不符合題意;故選:ABC.【考點】本題考查的是相似形的定義,結(jié)合圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.三、填空題1、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.2、2【解析】【分析】首先求出的頂點坐標和與x軸兩個交點坐標,然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點坐標為∵當時,即,解得:,∴拋物線與x軸兩個交點坐標為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點】此題考查了二次函數(shù)與x軸的交點問題,等腰直角三角形的性質(zhì),解題的關(guān)鍵是求出的頂點坐標和與x軸兩個交點坐標.3、或【解析】【分析】(1)分別在、、中應用含角的直角三角形的性質(zhì)以及勾股定理求得,,再根據(jù)垂直平分線的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據(jù)垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)、分線段成比例定理可證得,然后根據(jù)平行線的性質(zhì)、相似三角形的判定和性質(zhì)列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設(shè),則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當時,連接、交于點,過點作于,如圖2:設(shè),則,∵垂直平分線段,點是的中點∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點】本題考查了垂直平分線的性質(zhì)和判定、含角的直角三角形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、平行線的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數(shù)學思想.4、1【解析】【分析】根據(jù)拋物線的頂點坐標和開口方向即可得出答案.【詳解】解:,該拋物線的頂點坐標為,且開口方向向上,當時,取得最小值,故答案為:1.【考點】本題考查二次函數(shù)的最值,求二次函數(shù)最大值或最小值有三種方法:第一種可有圖象直接得出,第二種是配方法,第三種是公式法.5、3【解析】【分析】根據(jù)直角三角形的性質(zhì)得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點D為AB中點,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點】本題考查了直角三角形的性質(zhì),勾股定理,平行線分線段成比例,解題的關(guān)鍵是通過平行得到比例式.6、【解析】【分析】根據(jù)二次函數(shù)的圖象具有對稱性和表格中的數(shù)據(jù),可以計算出該函數(shù)圖象的對稱軸.【詳解】解:由表格可得,當x取-3和-1時,y值相等,該函數(shù)圖象的對稱軸為直線,故答案為:.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的對稱性解答.7、

(1,-2)

【解析】【分析】(1)將二次函數(shù)解析式化為頂點式求解;(2)拋物線的對稱軸為直線x=1,得到當點M,N關(guān)于拋物線的對稱軸對稱時,x1+x2=2,結(jié)合x2-x1=2,可得x1=0,x2=2,得到當2<x2≤3時,y1<y2,再將x=2、x=3代入函數(shù)關(guān)系式進行求解即可.【詳解】(1)∵,∴拋物線頂點坐標為(1,-2),故答案為(1,-2).(2)∵拋物線的對稱軸為直線x=1,∴當點M,N關(guān)于拋物線的對稱軸對稱時,x1+x2=2,結(jié)合x2-x1=2,可得x1=0,x2=2,∴當2<x2≤3時,y1<y2,對于y=m(x-1)2-2,當x=2時,y=m-2;當x=3時,y=4m-2,∴.【考點】本題考查二次函數(shù)圖象上的點的特征,解題關(guān)鍵是掌握二次函數(shù)與方程及不等式的關(guān)系.四、解答題1、(1)見解析;(2)見解析;(3)【解析】【分析】(1)如圖,連接,由和分別是弧所對的圓心角和圓周角,利用圓周角定理可得,由,可得,OC平分,由,利用三線合一可證即可.

(2)如圖,過點作于,由平分,,,可得,,,由勾股定理得,,可求即可.(3)由,可得,由,可得,由,,可得,由平分,可得,由,可得,可證,可得,即,可求,由勾股定理,可求即可得到答案.【詳解】證明(1)如圖,連接,∵和分別是弧所對的圓心角和圓周角,∴,∵,∴,∴,∵,∴.

(2)如圖,過點作于,∵平分,,,∴,,,

∵,,∴,∴.

(3)∵,∴,∵,∴,

∵,,∴,∴,∵平分,∴,∵,∴,∴,

∵,∴,∴,∵,∴,∴,∵,,∴,解得:,(舍去),∴,∴,∴,即半徑的長是.【考點】本題考查圓周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì),掌握圓周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì)是解題關(guān)鍵.2、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當拋物線開口向上時,誰離對稱軸遠誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關(guān)系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠對應的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當時,有最小值∴解得,∵∴②若,即,則當時,有最小值-1不合題意,舍去③若,,則當時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關(guān)系來確定二次函數(shù)的最值是解本題的關(guān)鍵.3、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點】本題考查切線的判定和性質(zhì),等邊三角形的判定和性質(zhì),思想的面積公式等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.4、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<。【解析】【分析】(1)令-x2-2x+3=x+d求解即可;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標,然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標進行數(shù)形結(jié)合畫圖找出d的取值范圍即可.【詳解】解:(1)當直線l經(jīng)過點A(-3,0)時,d=;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論