版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
蘇教七年級下冊期末解答題壓軸數(shù)學重點中學試卷經(jīng)典套題及答案解析一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點G,點D在BC邊上運動(不與點G重合),過點D作DE∥AC交AB于點E.(1)如圖1,點D在線段CG上運動時,DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關系?請說明理由;(2)點D在線段BG上運動時,∠BDE的角平分線所在直線與射線AG交于點F試探究∠AFD與∠B之間的數(shù)量關系,并說明理由2.如圖,平分,平分,請判斷與的位置關系并說明理由;如圖,當且與的位置關系保持不變,移動直角頂點,使,當直角頂點點移動時,問與否存在確定的數(shù)量關系?并說明理由.如圖,為線段上一定點,點為直線上一動點且與的位置關系保持不變,①當點在射線上運動時(點除外),與有何數(shù)量關系?猜想結論并說明理由.②當點在射線的反向延長線上運動時(點除外),與有何數(shù)量關系?直接寫出猜想結論,不需說明理由.3.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質,可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關系?請說明理由;(2)在(1)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關系.4.【問題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關系?并說明理由;【問題遷移】如圖2,DF∥CE,點P在三角板AB邊上滑動,∠PCE=∠α,∠PDF=∠β.(1)當點P在E、F兩點之間運動時,如果α=30°,β=40°,則∠DPC=°.(2)如果點P在E、F兩點外側運動時(點P與點A、B、E、F四點不重合),寫出∠DPC與α、β之間的數(shù)量關系,并說明理由.(圖1)(圖2)5.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.6.我們將內(nèi)角互為對頂角的兩個三角形稱為“對頂三角形.例如,在圖1中,的內(nèi)角與的內(nèi)角互為對頂角,則與為對頂三角形,根據(jù)三角形內(nèi)角和定理知“對頂三角形”有如下性質:.(1)(性質理解)如圖2,在“對頂三角形”與中,,,求證:;(2)(性質應用)如圖3,在中,點D、E分別是邊、上的點,,若比大20°,求的度數(shù);(3)(拓展提高)如圖4,已知,是的角平分線,且和的平分線和相交于點P,設,求的度數(shù)(用表示).7.認真閱讀下面關于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.(探究1):如圖1,在ΔABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90o+∠A,(請補齊空白處)理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(________)=90o+∠A.(探究2):如圖2,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關系?請說明理由.(應用):如圖3,在RtΔAOB中,∠AOB=90o,已知AB不平行與CD,AC、BD分別是∠BAO和∠ABO的角平分線,又CE、DE分別是∠ACD和∠BDC的角平分線,則∠E=_______;(拓展):如圖4,直線MN與直線PQ相交于O,∠MOQ=60o,點A在射線OP上運動,點B在射線OM上運動,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線交于E、F,在ΔAEF中,如果有一個角是另一個角的4倍,則∠ABO=______.8.已知:直線l分別交AB、CD與E、F兩點,且AB∥CD.(1)說明:∠1=∠2;(2)如圖2,點M、N在AB、CD之間,且在直線l左側,若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度數(shù);②如圖3,若EP平分∠AEM,F(xiàn)P平分∠CFN,求∠P的度數(shù);(3)如圖4,∠2=80°,點G在射線EB上,點H在AB上方的直線l上,點Q是平面內(nèi)一點,連接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接寫出∠GQH的度數(shù).9.(1)思考探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度數(shù).(2)類比探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點,已知∠P=n°.求∠A的度數(shù)(用含n的式子表示).(3)拓展遷移:已知,在四邊形ABCD中,四邊形ABCD的內(nèi)角∠ABC與外角∠DCE的平分線所在直線相交于點P,∠P=n°,請畫出圖形;并探究出∠A+∠D的度數(shù)(用含n的式子表示).10.已知E、D分別在的邊、上,C為平面內(nèi)一點,、分別是、的平分線.(1)如圖1,若點C在上,且,求證:;(2)如圖2,若點C在的內(nèi)部,且,請猜想、、之間的數(shù)量關系,并證明;(3)若點C在的外部,且,請根據(jù)圖3、圖4直接寫出結果出、、之間的數(shù)量關系.【參考答案】一、解答題1.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質得出∠DGF=100°,再由三角形的外角性質即可得出結果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質即可得出結果;②由①得:∠EDB=∠C,,,由三角形的外角性質得出∠DGF=∠B+∠BAG,再由三角形的外角性質即可得出結論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質和三角形內(nèi)角和定理即可得出結論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質、平行線的性質等知識;熟練掌握三角形內(nèi)角和定理和三角形的外角性質是解題的關鍵.2.(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結論;(2)過E作EF∥AB,根據(jù)平行線的性質可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.試題解析:證明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.證明如下:過E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如圖3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如圖4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.點睛:本題考查了平行線的性質,根據(jù)題意作出平行線是解答此題的關鍵.3.(1),理由見解析;(2)當點P在B、O兩點之間時,;當點P在射線AM上時,.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質得出∠α=∠DPE,∠β=∠C解析:(1),理由見解析;(2)當點P在B、O兩點之間時,;當點P在射線AM上時,.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分兩種情況:①點P在A、M兩點之間,②點P在B、O兩點之間,分別畫出圖形,根據(jù)平行線的性質得出∠α=∠DPE,∠β=∠CPE,即可得出結論.【詳解】解:(1)∠CPD=∠α+∠β,理由如下:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)當點P在A、M兩點之間時,∠CPD=∠β-∠α.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當點P在B、O兩點之間時,∠CPD=∠α-∠β.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點睛】本題考查了平行線的性質的運用,主要考核了學生的推理能力,解決問題的關鍵是作平行線構造內(nèi)錯角,利用平行線的性質進行推導.解題時注意:問題(2)也可以運用三角形外角性質來解決.4.∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成圖形,根據(jù)平行線的性質得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【問題探究】解:∠DPC=α+β如圖,過P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【問題遷移】(1)70(圖1)(圖2)(2)如圖1,∠DPC=β-α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β-α如圖2,∠DPC=α-β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α-β5.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質得到;進一步求得,,然后根據(jù)三角形外角的性質解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質及應用,正確作出輔助線、構造平行線、再利用平行線性質進行求解是解答本題的關鍵.6.(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質得,從而得,進而即可得到結論;(2)設=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質得,從而得,進而即可得到結論;(2)設=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根據(jù)三角形內(nèi)角和定理,列出方程,即可求解;(3)設∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,結合∠CEP+∠ACD=∠CDP+∠P,即可得到結論.【詳解】(1)證明:∵在“對頂三角形”與中,∴,∵,∴,∵,∴,又∵∴;(2)∵比大20°,+=+,∴設=x,=y,則=x+20°,=y-20°,∵,∴∠ABC+∠ACB=180°-∠A=180°-=x+y,∴∠ABC+∠DCB=∠ABC+∠ACB-=x+y-x-20°=y-20°,∵∠ABC+∠DCB+=180°,∴y-20°+y=180°,解得:y=100°,∴=100°;(3)∵,是的角平分線,∴設∠ABE=∠CBE=x,∠ACD=∠BCD=y,∴2x+2y+=180°,即:x+y=90°-,∵和的平分線和相交于點P,∴∠CEP=(180°-2y-x),∠CDP=(180°-2x-y),∵∠CEP+∠ACD=∠CDP+∠P,∴∠P=(180°-2y-x)+y-(180°-2x-y)=x+y=45°-,即:∠P=45°-.【點睛】本題主要考查角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質,熟練掌握“對頂三角形”的性質,是解題的關鍵.7.【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠ACB,根據(jù)三角形的內(nèi)角和定理可得∠1+∠2=90o-∠A,再根據(jù)三角形的內(nèi)角和定理即可得出結論;【探究2】如圖2,由三角形的外角性質和角平分線的定義可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根據(jù)三角形的內(nèi)角和定理即可得出結論;【應用】延長AC與BD,設交點為G,如圖5,由【探究1】的結論可得∠G的度數(shù),于是可得∠GCD+∠GDC的度數(shù),然后根據(jù)角平分線的定義和角的和差可得∠1+∠2的度數(shù),再根據(jù)三角形的內(nèi)角和定理即可求出結果;【拓展】根據(jù)角平分線的定義和平角的定義可得∠EAF=90°,然后分三種情況討論:若∠EAF=4∠E,則∠E=22.5°,根據(jù)角平分線的定義和三角形的外角性質可得∠ABO=2∠E,于是可得結果;若∠EAF=4∠F,則∠F=22.5°,由【探究2】的結論可求出∠ABO=135°,然后由三角形的外角性質即可判斷此種情況不存在;若∠F=4∠E,則∠E=18°,然后再由第一種情況的結論∠ABO=2∠E即可求出結果,進而可得答案.【詳解】解:【探究1】理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,∠2=∠ACB,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(90o-∠A)=90o+∠A;故答案為:∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A;理由如下:如圖2,由三角形的外角性質和角平分線的定義,∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),在△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣(∠A+∠ACB+∠A+∠ABC),=180°﹣(180°+∠A),=90°﹣∠A;【應用】延長AC與BD,設交點為G,如圖5,由【探究1】的結論可得:∠G=,∴∠GCD+∠GDC=45°,∵CE、DE分別是∠ACD和∠BDC的角平分線,∴∠1=∠ACD=,∠2=∠BDC=,∴∠1+∠2=+=,∴;故答案為:22.5°;【拓展】如圖4,∵AE、AF是∠BAO和∠OAG的角平分線,∴∠EAQ+∠FAQ=,即∠EAF=90°,在Rt△AEF中,若∠EAF=4∠E,則∠E=22.5°,∵∠EOQ=∠E+∠EAQ,∠BOQ=2∠EOQ,∠BAO=2∠EAQ,∴∠BOQ=2∠E+∠BAO,又∠BOQ=∠BAO+∠ABO,∴∠ABO=2∠E=45°;若∠EAF=4∠F,則∠F=22.5°,則由【探究2】知:,∴∠ABO=135°,∵∠ABO<∠BOQ=60°,∴此種情況不存在;若∠F=4∠E,則∠E=18°,由第一種情況可知:∠ABO=2∠E,∴∠ABO=36°;綜上,∠ABO=45°或36°;故答案為:45°或36°.【點睛】本題主要考查了角平分線的定義、三角形的內(nèi)角和定理、平角的定義和三角形的外角性質等知識,具有一定的綜合性,熟練掌握上述知識、靈活應用整體思想是解題的關鍵.8.(1)理由見解析;(2)①80°,②40°;(3)38°、74°、86°、122°.【分析】(1)根據(jù)平行線的性質及對頂角的性質即可得證;(2)①過拐點作AB的平行線,根據(jù)平行線的性質推理即可解析:(1)理由見解析;(2)①80°,②40°;(3)38°、74°、86°、122°.【分析】(1)根據(jù)平行線的性質及對頂角的性質即可得證;(2)①過拐點作AB的平行線,根據(jù)平行線的性質推理即可得到答案;②過點P作AB的平行線,根據(jù)平行線的性質及角平分線的定義求得角的度數(shù);(3)分情況討論,畫出圖形,根據(jù)三角形的內(nèi)角和與外角的性質分別求出答案即可.【詳解】(1),;(2)①分別過點M,N作直線GH,IJ與AB平行,則,如圖:,,,;②過點P作AB的平行線,根據(jù)平行線的性質可得:,,∵EP平分∠AEM,F(xiàn)P平分∠CFN,∴,即;(3)分四種情況進行討論:由已知條件可得,①如圖:②如圖:,;③如圖:,;④如圖:,;綜上所述,∠GQH的度數(shù)為38°、74°、86°、122°.【點睛】本題考查平行線的性質,三角形外角的性質等內(nèi)容,解題的關鍵是掌握輔助線的作法以及分類討論的思想.9.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根據(jù)三角形內(nèi)角和定理可以算出∠A的大小,再根據(jù)角平分線的性解析:(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根據(jù)三角形內(nèi)角和定理可以算出∠A的大小,再根據(jù)角平分線的性質和三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠PCD=∠P+∠PBC,即可得解;(2)和(1)證明方法類似,先證明∠A+∠ABC=2(∠P+∠PBC),再證明∠A=2∠P即可得到答案;(3)延長BA交CD的延長線于F根據(jù)三角形內(nèi)角和定理和三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,即可得到第一種情況;延長AB交DC的延長線于F,同理即可得到答案.【詳解】解:(1)∠A=30°,∠P=15°∵∠ACD+∠ACB=180°,∠ACD=100°∴∠ACB=80°,∵∠ABC+∠ACB+∠A=180°(三角形內(nèi)角和定理),又∵∠ABC=70°,∴∠A=30°,∵P點是∠ABC和外角∠ACD的角平分線的交點,∴∠PCD=∠ACD=50°,∠PBC=∠ABC=35°∵∠PBC+∠PCB+∠P=180°,∠PCB+∠PCD=180°∴∠PCD=∠PBC+∠P∴∠P=50°-35°=15°(2)結論:∠A=2n°,理由如下:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC(三角形的一個外角等于與它不相鄰的兩個內(nèi)角和),又∵P點是∠ABC和外角∠ACD的角平分線的交點,∴∠ACD=2∠PCD,∠ABC=2∠PBC,∴∠A+∠ABC=2(∠P+∠PBC)(等量替換),∴∠A+∠ABC=2∠P+2∠PBC,∴∠A+∠ABC=2∠P+∠ABC(等量替換),∴∠A=2∠P;∴∠A=2n°(3)(Ⅰ)如圖②延長BA交CD的延長線于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣∠A)﹣(180°﹣∠D)=∠A+∠D﹣180°,由(2)可知:∠F=2∠P=2n°,∴∠A+∠D=180°+2n°。(Ⅱ)如圖③,延長AB交DC的延長線于F.∵∠F=180°﹣∠A﹣∠D,∠P=∠F,∴∠P=(180°﹣∠A﹣∠D)=90°﹣(∠A+∠D).∴∠A+∠D=180°﹣2n°綜上所述:∠A+∠D=180°+2n°或180°﹣2n°;【點睛】本題主要考查三角形綜合題,三角形內(nèi)角和定理、四邊形內(nèi)角和定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用已知結論解決問題,屬于中考??碱}型.10.(1)證明見解析;(2)∠CD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)員工行為規(guī)范制度
- 企業(yè)調(diào)休制度
- 交通擁堵監(jiān)測與評估制度
- 2026湖南海利高新技術產(chǎn)業(yè)集團有限公司國家危險化學品應急救援湖南海利隊人員招聘31人備考題庫附答案
- 2026年及未來5年市場數(shù)據(jù)中國調(diào)味水產(chǎn)干制品行業(yè)發(fā)展全景監(jiān)測及投資前景展望報告
- 2026福建福州市閩江學院附屬中學招聘1人參考題庫附答案
- 2026西安高新區(qū)第九初級中學招聘教師考試備考題庫附答案
- 2026貴州黔東南州民族醫(yī)藥研究院招聘編外合同制醫(yī)師參考題庫附答案
- 2026重慶醫(yī)科大學附屬第一醫(yī)院人員(編制外)招聘4人備考題庫附答案
- 2026年及未來5年市場數(shù)據(jù)中國航空制造行業(yè)市場全景監(jiān)測及投資策略研究報告
- 交通運輸安全檢查與處理規(guī)范(標準版)
- UCL介紹教學課件
- 木工電鋸使用規(guī)范制度
- 骨科跟骨骨折課件
- 2026年美團商業(yè)分析師崗位筆試解析與面試問答技巧
- 某高校十五五教育大數(shù)據(jù)治理中心與智慧校園支撐平臺建設方案
- 2026年山西警官職業(yè)學院單招綜合素質考試備考試題帶答案解析
- 汽修廠文件檔案歸檔制度
- 高??蒲许椖苛㈨椉肮芾硪?guī)范
- 2026年工業(yè)數(shù)字化能碳管理項目可行性研究報告
- 《事故隱患排查治理資金使用專項制度》
評論
0/150
提交評論