重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷附完整答案詳解(名師系列)_第1頁
重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷附完整答案詳解(名師系列)_第2頁
重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷附完整答案詳解(名師系列)_第3頁
重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷附完整答案詳解(名師系列)_第4頁
重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試卷附完整答案詳解(名師系列)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下列事件是確定事件的是()A.方程有實(shí)數(shù)根 B.買一張?bào)w育彩票中大獎(jiǎng)C.拋擲一枚硬幣正面朝上 D.上海明天下雨2、下列事件為隨機(jī)事件的是()A.四個(gè)人分成三組,恰有一組有兩個(gè)人 B.購買一張福利彩票,恰好中獎(jiǎng)C.在一個(gè)只裝有白球的盒子里摸出了紅球 D.?dāng)S一次骰子,向上一面的點(diǎn)數(shù)小于73、如圖是下列哪個(gè)立體圖形的主視圖()A. B.C. D.4、下列圖形中,既是中心對(duì)稱圖形又是抽對(duì)稱圖形的是()A. B. C. D.5、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計(jì)這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6206、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°7、已知⊙O的半徑為4,,則點(diǎn)A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定8、“2022年春節(jié)期間,中山市會(huì)下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機(jī)事件第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、半徑為6cm的扇形的圓心角所對(duì)的弧長為cm,這個(gè)圓心角______度.2、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.3、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點(diǎn)C,CM為⊙O的直徑,且CM=1.過點(diǎn)M作⊙O的切線分別交邊AB,AD于點(diǎn)G,H.BD與CG,CH分別交于點(diǎn)E,F(xiàn),⊙O繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個(gè)結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號(hào)).4、如果一個(gè)扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個(gè)“完美扇形”的周長等于6,那么這個(gè)扇形的面積等于_____.5、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.6、如圖,在矩形中,,,F(xiàn)為中點(diǎn),P是線段上一點(diǎn),設(shè),連結(jié)并將它繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到線段,連結(jié)、,則在點(diǎn)P從點(diǎn)B向點(diǎn)C的運(yùn)動(dòng)過程中,有下面四個(gè)結(jié)論:①當(dāng)時(shí),;②點(diǎn)E到邊的距離為m;③直線一定經(jīng)過點(diǎn);④的最小值為.其中結(jié)論正確的是______.(填序號(hào)即可)7、某農(nóng)科所為了深入踐行“綠水青山就是金山銀山”的理念,大力開展對(duì)植物生長的研究,該農(nóng)科所在相同條件下做某植物種子發(fā)芽率的試驗(yàn),得到的結(jié)果如下表所示:種子個(gè)數(shù)1002003004005006007008009001000…發(fā)芽種子個(gè)數(shù)94188281349435531625719812902…發(fā)芽種子頻率(結(jié)果保留兩位小數(shù))0.940.940.940.870.870.890.890.900.900.90…根據(jù)頻率的穩(wěn)定性,估計(jì)這種植物種子不發(fā)芽的概率是______.三、解答題(7小題,每小題0分,共計(jì)0分)1、從一副普通的撲克牌中取出四張牌,它們的牌面數(shù)字分別為.將這四張撲克牌背面朝上,洗勻.(1)從中隨機(jī)抽取一張,則抽取的這張牌的牌面數(shù)字能被3整除的概率是________;(2)從中隨機(jī)抽取一張,不放回,再從剩余的三張牌中隨機(jī)抽取一張.①利用畫樹狀圖或列表的方法,寫出取出的兩張牌的牌面數(shù)字所有可能的結(jié)果;②求抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的概率.2、為了引導(dǎo)青少年學(xué)黨史,某中學(xué)舉行了“獻(xiàn)禮建黨百年”黨史知識(shí)競賽活動(dòng),將成績劃分為四個(gè)等級(jí):A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機(jī)調(diào)查了部分同學(xué)的競賽成績,繪制成了如下統(tǒng)計(jì)圖(部分信息未給出):(1)小李共抽取了名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,扇形統(tǒng)計(jì)圖中“優(yōu)秀”等級(jí)對(duì)應(yīng)的扇形圓心角度數(shù)為,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(2)該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校競賽成績“優(yōu)秀”的學(xué)生人數(shù);(3)已知調(diào)查對(duì)象中只有兩位女生競賽成績不合格,小李準(zhǔn)備隨機(jī)回訪兩位競賽成績不合格的同學(xué),請(qǐng)用樹狀圖或列表法求出恰好回訪到一男一女的概率.3、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn).(1)當(dāng)C轉(zhuǎn)到AB邊上點(diǎn)C′位置時(shí),A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點(diǎn)D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點(diǎn)在一條直線上時(shí),請(qǐng)直接寫出此時(shí)旋轉(zhuǎn)角α的度數(shù).4、隨著科技的發(fā)展,溝通方式越來越豐富.一天,甲、乙兩位同學(xué)同步從“微信”“QQ”,“電話”三種溝通方式中任意選一種與同學(xué)聯(lián)系.(1)用恰當(dāng)?shù)姆椒信e出甲、乙兩位同學(xué)選擇溝通方式的所有可能;(2)求甲、乙兩位同學(xué)恰好選擇同一種溝通方式的概率.5、小明每天騎自行車.上學(xué),都要通過安裝有紅、綠燈的4個(gè)十字路口.假設(shè)每個(gè)路口紅燈和綠燈亮的時(shí)間相同.(1)小明從家到學(xué)校,求通過前2個(gè)十字路口時(shí)都是綠燈的概率.(請(qǐng)用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)(2)小明從家到學(xué)校,通過這4個(gè)十字路口時(shí)至少有2個(gè)綠燈的概率為.(請(qǐng)直接寫出答案)6、在一個(gè)不透明的盒子中裝有四個(gè)只有顏色不同的小球,其中兩個(gè)紅球,一個(gè)黃球,一個(gè)藍(lán)球.(1)攪勻后從中任意摸出1個(gè)球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個(gè)球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個(gè)球,用列表法或樹形圖的方法,求兩次都是紅球的概率.7、如圖,在中,,,將繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點(diǎn)F.(1)求的度數(shù);(2)若,且,求DF的長.-參考答案-一、單選題1、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類對(duì)各個(gè)選項(xiàng)逐個(gè)分析,即可得到答案【詳解】解:.方程無實(shí)數(shù)根,因此“方程有實(shí)數(shù)”是不可能事件,所以選項(xiàng)符合題意;B.買一張?bào)w育彩票可能中大獎(jiǎng),有可能不中,因此是隨機(jī)事件,所以選項(xiàng)B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項(xiàng)C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項(xiàng)D不符合題意;故選:.【點(diǎn)睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.2、B【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、四個(gè)人分成三組,恰有一組有兩個(gè)人,是必然事件,不合題意;B、購買一張福利彩票,恰好中獎(jiǎng),是隨機(jī)事件,符合題意;C、在一個(gè)只裝有白球的盒子里摸出了紅球,是不可能事件,不合題意;D、擲一次骰子,向上一面的點(diǎn)數(shù)小于7,是必然事件,不合題意;故選:B.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.4、B【詳解】解:.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;.既是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)符合題意;.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題主要考查了中心對(duì)稱圖形和軸對(duì)稱圖形的概念,解題的關(guān)鍵是判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合;判斷中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.5、C【分析】根據(jù)頻率估計(jì)概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時(shí),頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點(diǎn)睛】本題主要考查了利用頻率估計(jì)概率,概率的得出是在大量實(shí)驗(yàn)的基礎(chǔ)上得出的,不能單純的依靠幾次決定.6、D【分析】將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形,解題的關(guān)鍵是掌握旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.7、C【分析】根據(jù)⊙O的半徑r=4,且點(diǎn)A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點(diǎn)A到圓心O的距離d=5,∴d>r,∴點(diǎn)A在⊙O外,故選:C.【點(diǎn)睛】本題主要考查點(diǎn)與圓的位置關(guān)系,點(diǎn)與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:①點(diǎn)P在圓外?d>r;②點(diǎn)P在圓上?d=r;③點(diǎn)P在圓內(nèi)?d<r.8、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會(huì)下雨”這一事件為隨機(jī)事件,故選:D.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題1、60【分析】根據(jù)弧長公式求解即可.【詳解】解:,解得,,故答案為:60.【點(diǎn)睛】本題考查了弧長公式,靈活應(yīng)用弧長公式是解題的關(guān)鍵.2、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點(diǎn)睛】本題考查了弧長的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.3、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個(gè)結(jié)論;運(yùn)用對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點(diǎn)P,連接PA,則PA+PC≥AC,當(dāng)PC最大時(shí),PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時(shí),PA最小,計(jì)算即可.【詳解】∵GH是⊙O的切線,M為切點(diǎn),且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯(cuò)誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對(duì)角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點(diǎn)P,連接PA,∴GH=2PA,∴=,∴當(dāng)PA取最小值時(shí),有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當(dāng)PC最大時(shí),PA最小,∵直徑是圓中最大的弦,∴PC=1時(shí),PA最小,∴當(dāng)A,P,C三點(diǎn)共線時(shí),且PC最大時(shí),PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點(diǎn)睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點(diǎn)共圓,正方形的性質(zhì),熟練掌握?qǐng)A的性質(zhì),靈活運(yùn)用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.4、2【分析】根據(jù)扇形的面積公式S=,代入計(jì)算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個(gè)扇形的面積為:==2.答案為:2.【點(diǎn)睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個(gè)曲邊三角形,把弧長l看成底,R看成底邊上的高即可.5、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點(diǎn)睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運(yùn)用扇形的弧長與面積公式進(jìn)行求解.難點(diǎn)在于求出公式中的未知量.6、②③④【分析】①當(dāng)在點(diǎn)的右邊時(shí),得出即可判斷;②證明出即可判斷;③根據(jù)為等腰直角三角形,得出都是等腰直角三角形,得到即可判斷;④當(dāng)時(shí),有最小值,計(jì)算即可.【詳解】解:,為等腰直角三角形,,當(dāng)在點(diǎn)的左邊時(shí),,當(dāng)在點(diǎn)的右邊時(shí),,故①錯(cuò)誤;過點(diǎn)作,在和中,根據(jù)旋轉(zhuǎn)的性質(zhì)得:,,,,,故②正確;由①中得知為等腰直角三角形,,也是等腰直角三角形,過點(diǎn),不管P在上怎么運(yùn)動(dòng),得到都是等腰直角三角形,,即直線一定經(jīng)過點(diǎn),故③正確;是等腰直角三角形,當(dāng)時(shí),有最小值,,為等腰直角三角形,,,由勾股定理:,,故④正確;故答案是:②③④.【點(diǎn)睛】本題是四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理,等腰直角三角形,解題的關(guān)鍵是靈活運(yùn)用這些性質(zhì)進(jìn)行推理.7、0.1【分析】大量重復(fù)試驗(yàn)下“發(fā)芽種子”的頻率可以估計(jì)“發(fā)芽種子”的概率,據(jù)此求解.【詳解】觀察表格發(fā)現(xiàn)隨著實(shí)驗(yàn)次數(shù)的增多頻率逐漸穩(wěn)定在0.9附近,故“發(fā)芽種子”的概率估計(jì)值為0.9.∴這種植物種子不發(fā)芽的概率是0.1.故答案為:0.1.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率的知識(shí),解題的關(guān)鍵是了解大量重復(fù)試驗(yàn)中某個(gè)事件發(fā)生的頻率能估計(jì)概率.三、解答題1、(1)(2)①見解析;②【分析】(1)直接由概率公式求解即可;(2)①列表,共有12種等可能的結(jié)果,②抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的結(jié)果有4種,再由概率公式求解即可.(1)∵共有四張牌,它們的牌面數(shù)字分別為3,4,6,9,其中抽取的這張牌的牌面數(shù)字能被3整除的有3種,∴從中隨機(jī)抽取一張,則抽取的這張牌的牌面數(shù)字能被3整除的概率是故答案為:(2)①根據(jù)題意,列表如下:第一次第二次34693—(4,3)(6,3)(9,3)4(3,4)—(6,4)(9,4)6(3,6)(4,6)—(9,6)9(3,9)(4,9)(6,9)—所有可能產(chǎn)生的全部結(jié)果共有種.②∵抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的結(jié)果有4種∴抽取的這兩張牌的牌面數(shù)字之和是偶數(shù)的概率.【點(diǎn)睛】此題考查的是畫樹狀圖或列表法求概率.樹狀圖或列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回試驗(yàn)還是不放回試驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.2、(1)100,126°,條形統(tǒng)計(jì)圖見解析;(2)700;(3)【分析】(1)根據(jù)C等級(jí)的人數(shù)和所占比可求出抽取的總?cè)藬?shù),用A等級(jí)的人數(shù)除以抽取的總?cè)藬?shù)乘以360°可得A等級(jí)對(duì)應(yīng)扇形圓心角的度數(shù),用抽取的總?cè)藬?shù)乘以B等級(jí)所占的百分比得B等級(jí)的人數(shù),用抽取的總?cè)藬?shù)減去A、B、C等級(jí)的人數(shù)得出D等級(jí)人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖;(2)用2000乘以A等級(jí)所占的百分比即可估計(jì)出成績“優(yōu)秀”的學(xué)生人數(shù);(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回訪到一男一女的概率.【詳解】(1)C等級(jí)的人數(shù)和所占比可得抽取的總?cè)藬?shù)為:(名),∴“優(yōu)秀”等級(jí)對(duì)應(yīng)的扇形圓心角度數(shù)為:,B等級(jí)的人數(shù)為:(名),D等級(jí)的人數(shù)為:(名),∴補(bǔ)全條形統(tǒng)計(jì)圖如下所示:(2)(名),∴該校競賽成績“優(yōu)秀”的學(xué)生人數(shù)為700名;(3)∵抽取不及格的人數(shù)有5名,其中有2名女生,∴有3名男生,設(shè)3名男生分別為,,,2名女生分別為,,列表格如下所示:∴總的結(jié)果有20種,一男一女的有12種,∴回訪到一男一女的概率為.【點(diǎn)睛】本題考查統(tǒng)計(jì)與概率,其中涉及到條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖相關(guān)聯(lián)問題,用樣本估計(jì)總體以及用列舉法求概率,讀懂條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖所給出的條件是解題的關(guān)鍵.3、(1),證明見解析(2)成立,證明見解析(3)【分析】(1)設(shè),先根據(jù)直角三角形的性質(zhì)可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)等邊三角形的判定與性質(zhì)可得,,都是等邊三角形,從而可得,由此即可得出結(jié)論;(2)在上截取,連接,先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,,然后根據(jù)三角形的外角性質(zhì)可得,最后根據(jù)等腰三角形的判定可得,由此即可得出結(jié)論;(3)如圖(見解析),先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)直角三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)可得,最后根據(jù)旋轉(zhuǎn)角即可得.(1)解:,證明如下:設(shè),在中,,,由旋轉(zhuǎn)的性質(zhì)得:,,和都是等邊三角形,,,是等邊三角形,,;(2)解:成立,證明如下:如圖,在上截取,連接,由旋轉(zhuǎn)的性質(zhì)得:,,,在和中,,,,,,;(3)解:如圖,當(dāng)點(diǎn)三點(diǎn)在一條直線上時(shí),由旋轉(zhuǎn)的性質(zhì)得:,,在和中,,,,則旋轉(zhuǎn)角.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.4、(1)3種可能,分別是“微信”“QQ”,“電話”(2)【分析】(1)用例舉法可得甲,乙兩位同學(xué)選擇溝通方式都有3種可能.(2)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出恰好選中同一種溝通方式的結(jié)果數(shù),然后根據(jù)概率公式求解.(1)解:甲,乙兩位同學(xué)選擇溝通方式都有3種可能,分別是“微信”“QQ”,“電話”.(2)解:畫出樹狀圖,如圖所示所有情況共有9種情況,其中恰好選擇同一種溝通方式的共有3種情況,故兩人恰好選中同一種溝通方式的概率為.【點(diǎn)睛】本題考查了判斷簡單隨機(jī)事件的可能性,利用列表法與樹狀圖法求解等可能事件的概率;利用列表法或樹狀圖法展

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論