版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
冀教版8年級(jí)下冊(cè)期末測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、下列說(shuō)法錯(cuò)誤的是()A.平行四邊形對(duì)邊平行且相等 B.菱形的對(duì)角線平分一組對(duì)角C.矩形的對(duì)角線互相垂直 D.正方形有四條對(duì)稱軸2、如圖,將矩形ABCD繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)一定角度得到矩形.此時(shí)點(diǎn)A的對(duì)應(yīng)點(diǎn)恰好落在對(duì)角線AC的中點(diǎn)處.若AB=3,則點(diǎn)B與點(diǎn)之間的距離為()A.3 B.6 C. D.3、已知點(diǎn),在一次函數(shù)y=-2x-b的圖像上,則m與n的大小關(guān)系是()A.m>n B.m=n C.m<n D.無(wú)法確定4、如圖,把一長(zhǎng)方形紙片ABCD的一角沿AE折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)落在∠BAC內(nèi)部.若,且,則∠DAE的度數(shù)為()A.12° B.24° C.39° D.45°5、已知一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象經(jīng)過(guò)點(diǎn)(0,-1),且y的值隨x值的增大而增大,則這個(gè)一次函數(shù)的表達(dá)式可能是()A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣16、若n邊形每個(gè)內(nèi)角都為156°,那么n等于()A.8 B.12 C.15 D.167、在平面直角坐標(biāo)系中,已知a<0,b>0,則點(diǎn)P(a,b)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、在平面直角坐標(biāo)系中,點(diǎn)A(-2,4),點(diǎn)B(4,2),點(diǎn)P為x軸上一動(dòng)點(diǎn),當(dāng)PA+PB的值最小時(shí),此時(shí)點(diǎn)P的坐標(biāo)為_(kāi)___________.2、某班按課外閱讀時(shí)間將學(xué)生分為3組,第1、2組的頻率分別為0.2、0.5,則第3組的頻率是___.3、已知點(diǎn),則點(diǎn)到軸的距離為_(kāi)_____,到軸的距離為_(kāi)_____.4、正比例函數(shù)圖像經(jīng)過(guò)點(diǎn)(1,-1),那么k=__________.5、如圖,正方形的對(duì)角線、相交于點(diǎn)O,等邊繞點(diǎn)O旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)時(shí),的度數(shù)為_(kāi)___________.6、如圖,在平行四邊形ABCD中,∠D=100°,AC為對(duì)角線,將△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度后得到△AEF,使點(diǎn)D的對(duì)應(yīng)點(diǎn)E落在邊AB上,若點(diǎn)C的對(duì)應(yīng)點(diǎn)F落在邊CB的延長(zhǎng)線上,則∠EFB的度數(shù)為_(kāi)__.7、已知點(diǎn)是第二象限的點(diǎn),則的取值范圍是______.8、如圖,已知長(zhǎng)方形ABCD中,AD=3cm,AB=9cm,將此長(zhǎng)方形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,則△ADE的面積為_(kāi)______cm2.三、解答題(7小題,每小題10分,共計(jì)70分)1、在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)O為中心,逆時(shí)針旋轉(zhuǎn),得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為.記旋轉(zhuǎn)角為.(1)如圖①,當(dāng)點(diǎn)C落在上時(shí),求點(diǎn)D的坐標(biāo);(2)如圖②,當(dāng)時(shí),求點(diǎn)C的坐標(biāo);(3)在(2)的條件下,求點(diǎn)D的坐標(biāo)(直接寫(xiě)出結(jié)果即可).2、已知一次函數(shù)y=2x+4,一次函數(shù)圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.(1)直接寫(xiě)出點(diǎn)A、B的坐標(biāo);(2)在平面直角坐標(biāo)系xOy中,畫(huà)出函數(shù)圖象;(3)當(dāng)時(shí),直接寫(xiě)出y的取值范圍.3、背景資料:在已知所在平面上求一點(diǎn)P,使它到三角形的三個(gè)頂點(diǎn)的距離之和最小.這個(gè)問(wèn)題是法國(guó)數(shù)學(xué)家費(fèi)馬1640年前后向意大利物理學(xué)家托里拆利提出的,所求的點(diǎn)被人們稱為“費(fèi)馬點(diǎn)”.如圖1,當(dāng)三個(gè)內(nèi)角均小于120°時(shí),費(fèi)馬點(diǎn)P在內(nèi)部,當(dāng)時(shí),則取得最小值.(1)如圖2,等邊內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求的度數(shù),為了解決本題,我們可以將繞頂點(diǎn)A旋轉(zhuǎn)到處,此時(shí)這樣就可以利用旋轉(zhuǎn)變換,將三條線段、、轉(zhuǎn)化到一個(gè)三角形中,從而求出_______;知識(shí)生成:怎樣找三個(gè)內(nèi)角均小于120°的三角形的費(fèi)馬點(diǎn)呢?為此我們只要以三角形一邊在外側(cè)作等邊三角形并連接等邊三角形的頂點(diǎn)與的另一頂點(diǎn),則連線通過(guò)三角形內(nèi)部的費(fèi)馬點(diǎn).請(qǐng)同學(xué)們探索以下問(wèn)題.(2)如圖3,三個(gè)內(nèi)角均小于120°,在外側(cè)作等邊三角形,連接,求證:過(guò)的費(fèi)馬點(diǎn).(3)如圖4,在中,,,,點(diǎn)P為的費(fèi)馬點(diǎn),連接、、,求的值.(4)如圖5,在正方形中,點(diǎn)E為內(nèi)部任意一點(diǎn),連接、、,且邊長(zhǎng);求的最小值.4、-輛貨車從甲地到乙地,一輛轎車從乙地到甲地,兩車沿同一條公路分別從甲、乙兩地同時(shí)出發(fā),勻速行駛.已知轎車比貨車每小時(shí)多行駛20km;兩車相遇后休息了24分鐘,再同時(shí)繼續(xù)行駛,設(shè)兩車之間的距離為y(km),貨車行駛時(shí)間為x(h),請(qǐng)結(jié)合圖像信息解答下列問(wèn)題:(1)貨車的速度為_(kāi)_____km/h,轎車的速度為_(kāi)_____km/h;(2)求y與x之間的函數(shù)關(guān)系式(寫(xiě)出x的取值范圍),并把函數(shù)圖像畫(huà)完整;(3)貨車出發(fā)______h,與轎車相距30km.5、在棋盤(pán)中建立如圖所示的平面直角坐標(biāo)系,A、O、B三顆棋子的位置如圖所示,它們的坐標(biāo)分別是,,.(1)如圖添加棋子C,使A、O、B、C四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)?jiān)趫D中畫(huà)出該圖形的對(duì)稱軸.(2)在其他格點(diǎn)(除點(diǎn)C外)位置添加一顆棋子P,使A、O、B、P四顆棋子成為一個(gè)軸對(duì)稱圖形,直接寫(xiě)出棋子P的位置坐標(biāo)(寫(xiě)出2個(gè)即可).6、我國(guó)是一個(gè)嚴(yán)重缺水的國(guó)家.為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)8噸時(shí),水價(jià)為每噸1.5元,超過(guò)8噸時(shí),超過(guò)的部分按每噸2.2元收費(fèi).該市某戶居民10月份用水噸,應(yīng)交水費(fèi)元.(1)若,請(qǐng)寫(xiě)出與的函數(shù)關(guān)系式.(2)若,請(qǐng)寫(xiě)出與的函數(shù)關(guān)系式.(3)如果該戶居民這個(gè)月交水費(fèi)23元,那么這個(gè)月該戶用了多少噸水?7、為了提升學(xué)生的交通安全意識(shí),學(xué)校計(jì)劃開(kāi)展全員“交通法規(guī)”知識(shí)競(jìng)賽,七(3)班班主任趙老師給全班同學(xué)定下的目標(biāo)是:合格率達(dá)90%,優(yōu)秀率達(dá)25%(x<60為不合格;x≥60為合格;x≥90為優(yōu)秀),為了解班上學(xué)生對(duì)“交通法規(guī)”知識(shí)的認(rèn)知情況,趙老師組織了一次模擬測(cè)試,將全班同學(xué)的測(cè)試成績(jī)整理后作出如下頻數(shù)分布直方圖.(圖中的70~80表示,其余類推)(1)七(3)班共有多少名學(xué)生?(2)趙老師對(duì)本次模擬測(cè)試結(jié)果不滿意,請(qǐng)通過(guò)計(jì)算給出一條她不滿意的理由;(3)模擬測(cè)試后,通過(guò)強(qiáng)化教育,班級(jí)在學(xué)校“交通法規(guī)”競(jìng)賽中成績(jī)有了較大提高,結(jié)果優(yōu)秀人數(shù)占合格人數(shù)的,比不合格人數(shù)多10人.本次競(jìng)賽結(jié)果是否完成了趙老師預(yù)設(shè)的目標(biāo)?請(qǐng)說(shuō)明理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)矩形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)和正方形的性質(zhì)分別進(jìn)行判斷即可.【詳解】解:A、平行四邊形對(duì)邊平行且相等,正確,不符合題意;B、菱形的對(duì)角線平分一組對(duì)角,正確,不符合題意;C、矩形的對(duì)角線相等,不正確,符合題意;D、正方形有四條對(duì)稱軸,正確,不符合題意;故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)和正方形的性質(zhì),掌握以上性質(zhì)定理是解題的關(guān)鍵.2、B【解析】【分析】連接,由矩形的性質(zhì)得出∠ABC=90°,AC=BD,由旋轉(zhuǎn)的性質(zhì)得出,證明是等邊三角形,由等邊三角形的性質(zhì)得出,由直角三角形的性質(zhì)求出AC的長(zhǎng),由矩形的性質(zhì)可得出答案.【詳解】解:連接,∵四邊形ABCD是矩形,∴∠ABC=90°,AC=BD,∵點(diǎn)是AC的中點(diǎn),∴,∵將矩形ABCD繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)一定角度得到矩形,∴∴,∴是等邊三角形,∴∠BAA'=60°,∴∠ACB=30°,∵AB=3,∴AC=2AB=6,∴.即點(diǎn)B與點(diǎn)之間的距離為6.故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),求出AC的長(zhǎng)是解本題的關(guān)鍵.3、A【解析】【分析】由k=?2<0,利用一次函數(shù)的性質(zhì)可得出y隨x的增大而減小,結(jié)合<可得出m>n.【詳解】解:∵k=?2<0,∴y隨x的增大而減小,又∵點(diǎn)A(,m),B(,n)在一次函數(shù)y=?2x+1的圖象上,且<,∴m>n.故選:A.【點(diǎn)睛】本題考查了一次函數(shù)的性質(zhì),牢記“k>0,y隨x的增大而增大;k<0,y隨x的增大而減小”是解題的關(guān)鍵.4、C【解析】【分析】由折疊的性質(zhì)得到,由長(zhǎng)方形的性質(zhì)得到,根據(jù)角的和差倍分得到,整理得,最后根據(jù)解題.【詳解】解:折疊,是矩形故選:C.【點(diǎn)睛】本題考查角的計(jì)算、折疊性質(zhì)、數(shù)形結(jié)合思想等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.5、D【解析】【分析】根據(jù)題意和一次函數(shù)的性質(zhì),可以解答本題.【詳解】解:∵一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象經(jīng)過(guò)點(diǎn)(0,-1),且y的值隨x值的增大而增大,∴b=-1,k>0,故選:D.【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式,一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.6、C【解析】【分析】首先求得外角的度數(shù),然后利用多邊形的外角和是360度,列式計(jì)算即可求解.【詳解】解:由題意可知:n邊形每個(gè)外角的度數(shù)是:180°-156°=24°,則n=360°÷24°=15.故選:C.【點(diǎn)睛】本題考查了多邊形的外角與內(nèi)角,熟記多邊形的外角和定理是關(guān)鍵.7、B【解析】【分析】由題意知P點(diǎn)在第二象限,進(jìn)而可得結(jié)果.【詳解】解:∵a<0,b>0∴P點(diǎn)在第二象限故選B.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中點(diǎn)的位置.解題的關(guān)鍵在于明確橫坐標(biāo)為負(fù),縱坐標(biāo)為正的點(diǎn)在第二象限.二、填空題1、(2,0)【解析】【分析】作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B',連接AB′交x軸于點(diǎn)P,則點(diǎn)P即為所求.此時(shí),PA+PB的值最小,可得出B′(4,-2),利用待定系數(shù)法求出AB′的解析式,即可得點(diǎn)P的坐標(biāo).【詳解】作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B',連接AB′交x軸于點(diǎn)P,則點(diǎn)P即為所求.此時(shí),PA+PB的值最小,∵點(diǎn)B(4,2).∴B′(4,-2),設(shè)直線AB′的解析式為y=kx+b,∵點(diǎn)A(-2,4),點(diǎn)B′(4,-2).∴,解得:,∴直線AB′的解析式為y=-x+2,當(dāng)y=0時(shí),-x+2=0,解得:x=2,∴點(diǎn)P的坐標(biāo)(2,0);【點(diǎn)睛】本題主要考查最短路線問(wèn)題;若兩點(diǎn)在直線的同一旁,則需作其中一點(diǎn)關(guān)于這條直線的對(duì)稱點(diǎn).2、0.3【解析】【分析】根據(jù)各組頻率之和為1,可求出答案.【詳解】解:由各組頻率之和為1得,1-0.2-0.5=0.3,故答案為:0.3.【點(diǎn)睛】本題考查頻數(shù)和頻率,理解“各組頻數(shù)之和等于樣本容量,各組頻率之和等于1”是正確解答的前提.3、23【解析】【分析】點(diǎn)到x軸的距離等于縱坐標(biāo)的絕對(duì)值,到y(tǒng)軸的距離等于橫坐標(biāo)的絕對(duì)值,據(jù)此即可得答案.【詳解】∵點(diǎn)的坐標(biāo)為,∴點(diǎn)到軸的距離為,到軸的距離為.故答案為:2;3【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),熟記點(diǎn)到x軸的距離等于縱坐標(biāo)的絕對(duì)值,到y(tǒng)軸的距離等于橫坐標(biāo)的絕對(duì)值是解題的關(guān)鍵.4、-2【解析】【分析】由正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)的坐標(biāo),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出-1=k+1,即可得出k值.【詳解】解:∵正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(1,-1),∴-1=k+1,∴k=-2.故答案為:-2.【點(diǎn)睛】本題考查了正比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,牢記直線上任意一點(diǎn)的坐標(biāo)都滿足函數(shù)關(guān)系式y(tǒng)=kx是解題的關(guān)鍵.5、或【解析】【分析】分兩種情況:①根據(jù)正方形與等邊三角形的性質(zhì)得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判斷△ODE≌△OCF,則∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可證得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.【詳解】解:情況1,如下圖:∵四邊形ABCD是正方形,∴OD=OC,∠AOD=∠COD=90°,∵△OEF是等邊三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOF=∠COE,∴∠DOF=(∠COD-∠EOF)=×(90°﹣60°)=15°,∴∠AOF=∠AOD+∠DOF=90°+15°=105°;情況2,如下圖:連接DE、CF,∵四邊形ABCD為正方形,∴OC=OD,∠AOD=∠COB=90°,∵△OEF為等邊三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOE=∠COF=(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,∴∠BOF=∠COF-∠COB=105°-90°=15°,∴∠AOF=∠AOB-∠BOF=90°-15°=75°,故答案為:105°或75°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了正方形與等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),做題的關(guān)鍵是注意兩種情況和證三角形全等.6、20°##20度【解析】【分析】根據(jù)平行四邊形ABCD性質(zhì)求出∠DAB=180°-∠D=80°,根據(jù)△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性質(zhì)求出∠AFC=∠ACF=,根據(jù)平行線性質(zhì)∠DAC=∠ACF=50°,利用三角形內(nèi)角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.【詳解】解:在平行四邊形ABCD中,∠D=100°,∴∠DAB=180°-∠D=80°,∵△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度后得到△AEF,∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°∴∠AFC=∠ACF=∵AD∥BC,∴∠DAC=∠ACF=50°,∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,∴∠AFE=∠ACD=30°,∴∠EFB=∠AFC-∠AFE=50°-30°=20°,故答案為20°.【點(diǎn)睛】本題考查平行四邊形的性質(zhì),圖形旋轉(zhuǎn)性質(zhì),等腰三角形性質(zhì),角的和差,三角形內(nèi)角和,掌握平行四邊形的性質(zhì),圖形旋轉(zhuǎn)性質(zhì),等腰三角形性質(zhì),角的和差,三角形內(nèi)角和是解題關(guān)鍵.7、【解析】【分析】根據(jù)點(diǎn)是第二象限的點(diǎn),可得,即可求解.【詳解】解:∵點(diǎn)是第二象限的點(diǎn),∴,解得:,∴的取值范圍是.故答案為:【點(diǎn)睛】本題主要考查了平面直角坐標(biāo)系中各個(gè)象限的點(diǎn)的坐標(biāo)的符號(hào)特點(diǎn),熟練掌握四個(gè)象限的符號(hào)特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解題的關(guān)鍵.8、6【解析】【分析】根據(jù)折疊的條件可得:,在直角中,利用勾股定理就可以求解.【詳解】解:將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,..,根據(jù)勾股定理可知:..解得:.的面積為:.故答案為:.【點(diǎn)睛】本題考查了折疊的性質(zhì),三角形的面積,矩形的性質(zhì),勾股定理,解題的關(guān)鍵是注意掌握方程思想的應(yīng)用.三、解答題1、(1)(2)(3)【解析】【分析】(1)如圖,過(guò)點(diǎn)D作DE⊥OA于點(diǎn)E.解直角三角形求出OE,DE,可得結(jié)論;(2)如圖②,過(guò)點(diǎn)C作CT⊥OA于點(diǎn)T,解直角三角形求出OT,CT可得結(jié)論;(3)如圖②中,過(guò)點(diǎn)D作DJ⊥OA于點(diǎn)J,在DJ上取一點(diǎn)K,使得DK=OK,設(shè)OJ=m.利用勾股定理構(gòu)建方程求出m,可得結(jié)論.(1)如圖,過(guò)點(diǎn)作,垂足為.∵,,∴,,.∵,∴.在中,由,得.解得.∴,.∵是由旋轉(zhuǎn)得到的,∴,.∴.∴.∴.在中,.∴點(diǎn)的坐標(biāo)為.(2)如圖,過(guò)點(diǎn)作,垂足為.由已知,得.∴.∴.∵是由旋轉(zhuǎn)得到的,∴.在中,由,得.∴點(diǎn)的坐標(biāo)為.(3)如圖②中,過(guò)點(diǎn)D作DJ⊥OA于點(diǎn)J,在DJ上取一點(diǎn)K,使得DK=OK,設(shè)OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(負(fù)根已經(jīng)舍棄),∴OJ=,DJ=,∴D.【點(diǎn)睛】本題考查坐標(biāo)與圖形變化-旋轉(zhuǎn),解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)造直角三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,屬于中考常考題型.2、(1)(2)作圖見(jiàn)解析(3)【解析】【分析】(1)令求解一次函數(shù)與軸的交點(diǎn)坐標(biāo),令求解一次函數(shù)與軸的交點(diǎn)坐標(biāo);(2)先列表,再描點(diǎn),連線即可得到函數(shù)是圖象;(3)分別先求解當(dāng)時(shí)的函數(shù)值,再根據(jù)一次函數(shù)的增減性即可得到答案.(1)解:一次函數(shù)y=2x+4,令則令則(2)解:列表:描點(diǎn)并連線(3)解:一次函數(shù)y=2x+4,隨的增大而減小,當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),【點(diǎn)睛】本題考查的是畫(huà)一次函數(shù)的圖象,求解一次函數(shù)與坐標(biāo)軸的交點(diǎn),一次函數(shù)的增減性,掌握“畫(huà)一次函數(shù)的圖象與一次函數(shù)的增減性”是解本題的關(guān)鍵.3、(1)150°;(2)見(jiàn)詳解;(3);(4).【解析】【分析】(1)根據(jù)旋轉(zhuǎn)性質(zhì)得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根據(jù)△ABC為等邊三角形,得出∠BAC=60°,可證△APP′為等邊三角形,PP′=AP=3,∠AP′P=60°,根據(jù)勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;(2)將△APB逆時(shí)針旋轉(zhuǎn)60°,得到△AB′P′,連結(jié)PP′,根據(jù)△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根據(jù)∠PAP′=∠BAB′=60°,△APP′和△ABB′均為等邊三角形,得出PP′=AP,根據(jù),根據(jù)兩點(diǎn)之間線段最短得出點(diǎn)C,點(diǎn)P,點(diǎn)P′,點(diǎn)B′四點(diǎn)共線時(shí),最小=CB′,點(diǎn)P在CB′上即可;(3)將△APB逆時(shí)針旋轉(zhuǎn)60°,得到△AP′B′,連結(jié)BB′,PP′,得出△APB≌△AP′B′,可證△APP′和△ABB′均為等邊三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根據(jù),可得點(diǎn)C,點(diǎn)P,點(diǎn)P′,點(diǎn)B′四點(diǎn)共線時(shí),最小=CB′,利用30°直角三角形性質(zhì)得出AB=2AC=2,根據(jù)勾股定理BC=,可求BB′=AB=2,根據(jù)∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;(4)將△BCE逆時(shí)針旋轉(zhuǎn)60°得到△CE′B′,連結(jié)EE′,BB′,過(guò)點(diǎn)B′作B′F⊥AB,交AB延長(zhǎng)線于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可證△ECE′與△BCB′均為等邊三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出點(diǎn)C,點(diǎn)E,點(diǎn)E′,點(diǎn)B′四點(diǎn)共線時(shí),最小=AB′,根據(jù)四邊形ABCD為正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根據(jù)30°直角三角形性質(zhì)得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根據(jù)勾股定理AB′=即可.(1)解:連結(jié)PP′,∵≌,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC為等邊三角形,∴∠BAC=60°∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,∴△APP′為等邊三角形,,∴PP′=AP=3,∠AP′P=60°,在△P′PC中,PC=5,,∴△PP′C是直角三角形,∠PP′C=90°,∴∠AP′C=∠APP+∠PPC=60°+90°=150°,∴∠APB=∠AP′C=150°,故答案為150°;(2)證明:將△APB逆時(shí)針旋轉(zhuǎn)60°,得到△AB′P′,連結(jié)PP′,∵△APB≌△AB′P′,∴AP=AP′,PB=PB′,AB=AB′,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均為等邊三角形,∴PP′=AP,∵,∴點(diǎn)C,點(diǎn)P,點(diǎn)P′,點(diǎn)B′四點(diǎn)共線時(shí),最小=CB′,∴點(diǎn)P在CB′上,∴過(guò)的費(fèi)馬點(diǎn).(3)解:將△APB逆時(shí)針旋轉(zhuǎn)60°,得到△AP′B′,連結(jié)BB′,PP′,∴△APB≌△AP′B′,∴AP′=AP,AB′=AB,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均為等邊三角形,∴PP′=AP,BB′=AB,∠ABB′=60°,∵∴點(diǎn)C,點(diǎn)P,點(diǎn)P′,點(diǎn)B′四點(diǎn)共線時(shí),最小=CB′,∵,,,∴AB=2AC=2,根據(jù)勾股定理BC=∴BB′=AB=2,∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,∴在Rt△CBB′中,B′C=∴最小=CB′=;(4)解:將△BCE逆時(shí)針旋轉(zhuǎn)60°得到△CE′B′,連結(jié)EE′,BB′,過(guò)點(diǎn)B′作B′F⊥AB,交AB延長(zhǎng)線于F,∴△BCE≌△CE′B′,∴BE=B′E′,CE=CE′,CB=CB′,∵∠ECE′=∠BCB′=60°,∴△ECE′與△BCB′均為等邊三角形,∴EE′=EC,BB′=BC,∠B′BC=60°,∵,∴點(diǎn)C,點(diǎn)E,點(diǎn)E′,點(diǎn)B′四點(diǎn)共線時(shí),最小=AB′,∵四邊形ABCD為正方形,∴AB=BC=2,∠ABC=90°,∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,∵B′F⊥AF,∴BF=,BF=,∴AF=AB+BF=2+,∴AB′=,∴最小=AB′=.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),等邊三角形判定與性質(zhì),勾股定理,直角三角形判定與性質(zhì),兩點(diǎn)之間線段最短,四點(diǎn)共線,正方形性質(zhì),30°直角三角形性質(zhì),掌握?qǐng)D形旋轉(zhuǎn)性質(zhì),等邊三角形判定與性質(zhì),勾股定理,直角三角形判定與性質(zhì),兩點(diǎn)之間線段最短,四點(diǎn)共線,正方形性質(zhì),30°直角三角形性質(zhì)是解題關(guān)鍵.4、(1)80,100(2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,圖見(jiàn)解析(3)或【解析】【分析】(1)結(jié)合圖象可得經(jīng)過(guò)兩個(gè)小時(shí),兩車相遇,設(shè)貨車的速度為,則轎車的速度為,根據(jù)題意列出方程求解即可得;(2)分別求出各個(gè)時(shí)間段的函數(shù)解析式,然后再函數(shù)圖象中作出相應(yīng)直線即可;(3)將代入(2)中各個(gè)時(shí)間段的函數(shù)解析式,求解,同時(shí)考慮解是否在相應(yīng)時(shí)間段內(nèi)即可.(1)解:由圖象可得:經(jīng)過(guò)兩個(gè)小時(shí),兩車相遇,設(shè)貨車的速度為,則轎車的速度為,∴,解得:,,∴貨車的速度為,則轎車的速度為,故答案為:80;100;(2)當(dāng)時(shí),圖象經(jīng)過(guò),點(diǎn),設(shè)直線解析式為:,代入得:,解得:,∴當(dāng)時(shí),;分鐘小時(shí),∵兩車相遇后休息了24分鐘,∴當(dāng)時(shí),;當(dāng)時(shí),轎車距離甲地的路程為:,貨車距離乙地的路程為:,轎車到達(dá)甲地還需要:,貨車到達(dá)乙地還需要:,∴當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;∴函數(shù)圖象分別經(jīng)過(guò)點(diǎn),,,作圖如下:(3)①當(dāng)時(shí),令可得:,解得:;②當(dāng)時(shí),令可得:,解得:;③當(dāng)時(shí),令可得:;解得::,不符合題意,舍去;綜上可得:貨車出發(fā)或,與轎車相距30km,故答案為:或.【點(diǎn)睛】題目主要考查一元一次方程的應(yīng)用,一次函數(shù)的應(yīng)用,利用待定系數(shù)法確定一次函數(shù)解析式,作函數(shù)圖象等,理解題意,熟練掌握運(yùn)用一次函數(shù)的基本性質(zhì)是解題關(guān)鍵.5、(1)作圖見(jiàn)解析(2)(1,-1)、(0,-1)、(-2,1)(寫(xiě)出2個(gè)即可)【解析】【分析】(1)根據(jù)A,B,O,C的位置,結(jié)合軸對(duì)稱圖形的性質(zhì)進(jìn)而畫(huà)出對(duì)稱軸即可;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年達(dá)州職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試模擬試題有答案解析
- 2026年湖北輕工職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題帶答案解析
- 2026年河南經(jīng)貿(mào)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試參考題庫(kù)有答案解析
- 2026年安陽(yáng)幼兒師范高等??茖W(xué)校高職單招職業(yè)適應(yīng)性考試模擬試題帶答案解析
- 2026年博爾塔拉職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試模擬試題有答案解析
- 2026年安徽新聞出版職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試模擬試題有答案解析
- 投資合同(2025年新能源項(xiàng)目)
- 2026年福州科技職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考題庫(kù)帶答案解析
- 碳中和認(rèn)證服務(wù)協(xié)議(產(chǎn)品)2025年終止條件
- 2026年廣西科技師范學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考題庫(kù)帶答案解析
- 電廠固廢管理辦法
- 2025中央城市工作會(huì)議精神解讀
- 洗胃并發(fā)癥及處理
- 醫(yī)院科研誠(chéng)信培訓(xùn)課件
- 市場(chǎng)推廣專員兼職合同
- 現(xiàn)代農(nóng)業(yè)生產(chǎn)與經(jīng)營(yíng)管理
- 《民用建筑集中空調(diào)自動(dòng)控制系統(tǒng)技術(shù)標(biāo)準(zhǔn)》
- 民警進(jìn)校園安全教育
- 《彩超引導(dǎo)下球囊擴(kuò)張?jiān)谘芡藩M窄中的應(yīng)用》
- 《電力建設(shè)工程施工安全管理導(dǎo)則》(NB∕T 10096-2018)
- 裝修合同模板寫(xiě)
評(píng)論
0/150
提交評(píng)論