版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福安市中考數(shù)學(xué)真題分類(勾股定理)匯編專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于(
)A.29 B.32 C.36 D.452、在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.83、勾股定理是“人類最偉大的十個科學(xué)發(fā)現(xiàn)之一”.我國對勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時給出的,他用來證明勾股定理的圖案被稱為“趙爽弦圖”.2002年在北京召開的國際數(shù)學(xué)大會選它作為會徽.下列圖案中是“趙爽弦圖”的是(
)A. B. C. D.4、我圖古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深幾何?(注:丈、尺是長度單位,1丈=10尺)意思為:如圖,有一個邊長為1丈的正方形水池,在水池正中央有一根蘆葦,它高出水面1尺,如果把這根蘆葦拉向水池一邊的岸邊,它的頂端恰好碰到池邊的水面.則這根蘆葦?shù)拈L度是(
)A.5尺 B.10尺 C.12尺 D.13尺5、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點F,設(shè)BC=a,AC=b,AB=c,則下列關(guān)系式中成立的是(
)A.a(chǎn)2+b2=5c2 B.a(chǎn)2+b2=4c2 C.a(chǎn)2+b2=3c2 D.a(chǎn)2+b2=2c26、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個小正方形的邊長均為1),點A,B,C恰好在網(wǎng)格圖中的格點上,那么△ABC中BC邊上的高是(
)A. B. C. D.7、如圖,將直角三角形紙片沿AD折疊,使點B落在AC延長線上的點E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、在繼承和發(fā)揚紅色學(xué)校光榮傳統(tǒng),與時俱進,把育英學(xué)校建成一所文明的、受社會尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.2、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為17米,幾分鐘后船到達點D的位置,此時繩子CD的長為10米,問船向岸邊移動了__米.3、如圖,在中,,,,現(xiàn)將沿進行翻折,使點剛好落在上,則__________.4、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.5、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.6、如圖,在一次綜合實踐活動中,小明將一張邊長為的正方形紙片,沿著邊上一點與點的連線折疊,點是點的對應(yīng)點,延長交于點,經(jīng)測量,,則的面積為______.7、如圖,在中,,于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.8、勾股定理最早出現(xiàn)在商高的《周髀算經(jīng)》:“勾廣三,股修四,經(jīng)隅五”.觀察下列勾股數(shù):3,4,5;5,12,13;7,24,25;…,這類勾股數(shù)的特點是:勾為奇數(shù),弦與股相差為1,柏拉圖研究了勾為偶數(shù),弦與股相差為2的一類勾股數(shù),如:6,8,10;8,15,17;…,若此類勾股數(shù)的勾為2m(m≥3,m為正整數(shù)),則其弦是________(結(jié)果用含m的式子表示).三、解答題(7小題,每小題10分,共計70分)1、如圖,有一架秋千,當(dāng)他靜止時,踏板離地的垂直高度,將他往前推送(水平距離)時,秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長度.2、如圖,,兩個工廠位于一段直線形河道的異側(cè),工廠至河道的距離為,工廠至河道的距離為,經(jīng)測量河道上、兩地間的距離為,現(xiàn)準(zhǔn)備在河邊某處(河寬不計)修一個污水處理廠.(1)設(shè),請用的代數(shù)式表示的長______;(結(jié)果保留根號)(2)為了使,兩廠到污水處理廠的排污管道之和最短,請在圖中畫出污水廠位置,并求出排污管道最短長度?(3)通過以上的解答,充分展開聯(lián)想,運用數(shù)形結(jié)合思想,請你求出的最小值為多少?3、如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長均為1.(1)請在所給網(wǎng)格中畫一個邊長分別為,,的三角形;(2)此三角形的面積是.4、數(shù)學(xué)中,常對同一個量(圖形的面積、點的個數(shù)等)用兩種不同的方法計算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖2的方式拼成一個正方形.①用“算兩次”的方法計算圖2中陰影部分的面積:第一次列式為,第二次列式為,因為兩次所列算式表示的是同一個圖形的面積,所以可以得出等式;②在①中,如果,,請直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個邊長分別為,,的直角三角形和一個兩條直角邊都是的直角三角形拼成一個梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.5、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.6、在邊長為8的等邊ABC中,點D是邊AB上的一動點,點E在邊AC上,且CE=2AD,射線DE繞點D順時針旋轉(zhuǎn)60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數(shù);②取邊BC的中點M,當(dāng)PM取最小值時,求AD的長.7、如圖,將RtABC紙片沿AD折疊,使直角頂點C與AB邊上的點E重合,若AB=10cm,AC=6cm,求線段BD的長.-參考答案-一、單選題1、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點】本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運用勾股定理求出MC2和MB2是本題的難點,重點還是在于勾股定理的熟練掌握.2、A【解析】【分析】直接根據(jù)勾股定理求解即可.【詳解】解:∵在直角三角形中,勾為3,股為4,∴弦為,故選A.【考點】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.3、B【解析】【分析】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.【詳解】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形,如圖所示:故選B.【考點】本題主要考查了勾股定理的證明,證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理得到勾股定理.4、D【解析】【分析】依題意,蘆葦?shù)拈L度為直角三角形的斜邊,水深為一直角邊,另一直角邊為5尺,由勾股定理即可列出方程,進而得到答案.【詳解】解:設(shè)水深x尺,則蘆葦?shù)拈L度為(x+1)尺,依題意,由勾股定理,得:,解得,所以蘆葦?shù)拈L度為13尺.故選D.【考點】本題考查勾股定理的應(yīng)用,將題目描述問題轉(zhuǎn)化成直角三角形求邊長的問題是解題的關(guān)鍵.5、A【解析】【詳解】設(shè)EF=x,DF=y(tǒng),根據(jù)三角形重心的性質(zhì)得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關(guān)系.【解答】解:設(shè)EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點評】本題考查了三角形的重心:重心到頂點的距離與重心到對邊中點的距離之比為2:1.也考查了勾股定理.6、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設(shè)BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設(shè)BC邊上的高為h,則,∴.故選A.點睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長,并用勾股定理的逆定理來判斷三角形是否是直角三角形是解題的關(guān)鍵.7、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長,利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計算公式是解題的關(guān)鍵.二、填空題1、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.2、9.【解析】【分析】在Rt△ABC中,利用勾股定理計算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動了9米,故答案為:9.【考點】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.3、【解析】【詳解】解:設(shè)CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.54、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.5、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.6、##【解析】【分析】根據(jù)題意,,進而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點】本題考查了折疊的性質(zhì),勾股定理,掌握勾股定理是解題的關(guān)鍵.7、【解析】【分析】在△ABC中由等面積求出,進而得到,設(shè)BE=x,進而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.8、m2+1【解析】【分析】2m為偶數(shù),設(shè)其股是a,則弦為a+2,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】∵2m為偶數(shù),∴設(shè)其股是a,則弦為a+2,根據(jù)勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長為m2+1,故答案為:m2+1.【考點】本題考查了勾股數(shù),勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.三、解答題1、【解析】【分析】設(shè)秋千的繩索長為,則,,利用勾股定理得,再解方程即可得出答案.【詳解】解:設(shè)秋千的繩索長為,則,,在中,,即,解得,答:繩索的長度是.【考點】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AC、AB的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.2、(1)+;(2)污水廠位置見解析,排污管道最短長度為10km;(3)13【解析】【分析】(1)依據(jù)ED=x,AC⊥CD、BD⊥CD,故根據(jù)勾股定理可用x表示出AE+BE的長;(2)根據(jù)兩點之間線段最短可知連接AB與CD的交點就是污水處理廠E的位置.過點B作BF⊥AC于F,構(gòu)造出直角三角形,利用勾股定理求出AB的長;(3)根據(jù)AE+BE=+=AB=10,可猜想所求代數(shù)式的值為13.(1)解:在Rt△ACE和Rt△BDE中,根據(jù)勾股定理可得AE=,BE=,∴AE+BE=+;(2)解:根據(jù)兩點之間線段最短可知,連接AB與CD的交點就是污水處理廠E的位置,如圖:過點B作BF⊥AC于F,則有BF=CD=8,BD=CF=1,∴AF=AC+CF=6,在Rt△ABF中,BA===10,∴排污管道最短長度10km;(3)解:根據(jù)以上推理,可作出下圖:設(shè)ED=x,AC=3,DB=2,CD=12.當(dāng)A、E、B共線時求出AB的值即為原式最小值.當(dāng)A、E、B共線時,==13,即其最小值為13.故答案為:13.【考點】本題考查了最短路線問題,綜合利用了勾股定理,及用數(shù)形結(jié)合的方法求代數(shù)式的值的方法,利用兩點之間線段最短是解決問題的關(guān)鍵.3、(1)畫圖見解析;(2)【解析】【分析】(1)利用勾股定理在網(wǎng)格中確定再順次連接即可;(2)利用長方形的面積減去周圍三個三角形的面積即可.【詳解】解:(1)如圖,即為所求作的三角形,其中:(2)故答案為:【考點】本題考查的是網(wǎng)格中作三角形,勾股定理的應(yīng)用,網(wǎng)格三角形的面積的計算,掌握“利用勾股定理求解網(wǎng)格三角形的邊長”是解本題的關(guān)鍵.4、(1)①,,;或,,;②9;(2)【解析】【分析】(1)①第一次求解陰影部分的邊長,再計算面積,第二次利用大的正方形的面積減去四個長方形的面積,從而可建立等式;②直接利用公式,再整體代入求值即可;(2)第一次利用梯形的面積公式計算,第二次利用圖形的面積和計算,從而得到公式,再整理即可得到答案.【詳解】解:(1)因為小正方形的邊長為:所以第一次計算的面積為:,第二次計算的面積為:,所以:;或,,②∵,∴(3)第一次利用梯形的面積公式圖形面積為:第二次利用圖形的面積和計算為:整理得:【考點】本題考查的是利用幾何圖形的面積推導(dǎo)代數(shù)公式,掌握等面積法推導(dǎo)兩個完全平方公式之間的關(guān)系,推導(dǎo)勾股定理是解題的關(guān)鍵.5、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設(shè)BD=x,則.
在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,
解之得:.
∴.
∴.6、(1)見解析;(2)①30°;②2【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)求解即可;(2)①方法一:連接EP,過點P作GQ∥BC分別交AB,AC于點G,Q,易知△AGQ和△DEP均為等邊三角形,得到△ADE≌△GPD≌△QEP(AAS),即可得解;方法二:在DB上取DG=AE,證明△ADE≌△GPD(SAS),即可得解;②在DB上取DG=AE,當(dāng)時,PM取得最小值,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 健康系列活動策劃方案(3篇)
- 直播相伴活動策劃方案(3篇)
- 財務(wù)管理制度制定依據(jù)(3篇)
- 2026廣東廣州國家實驗室中國數(shù)字肺項目工程技術(shù)中心招聘2人備考考試題庫及答案解析
- 2026河北廊坊師范學(xué)院選聘26人參考考試題庫及答案解析
- 2026山東德州市事業(yè)單位招聘初級綜合類崗位人員備考考試題庫及答案解析
- 2026云南省人力資源和社會保障廳所屬事業(yè)單位招聘12人備考考試試題及答案解析
- 2026廣東廣州市華南理工大學(xué)醫(yī)院合同制人員招聘2人備考考試題庫及答案解析
- 2026廣東惠州市博羅縣村級經(jīng)濟聯(lián)盟有限公司招聘1人備考考試試題及答案解析
- 入校物品消毒管理制度(3篇)
- 廣東省領(lǐng)航高中聯(lián)盟2024-2025學(xué)年高一下學(xué)期第一次聯(lián)合考試語文試卷(含答案)
- 社區(qū)健康服務(wù)與管理課件
- QGDW1512-2014電力電纜及通道運維規(guī)程
- 投資車行合同協(xié)議書
- 國際消防安全系統(tǒng)規(guī)則
- 靜脈治療新理念
- 高中研究性學(xué)習(xí)指導(dǎo)課課件系列總結(jié)階段-學(xué)生如何開展研究活動
- 心內(nèi)介入治療護理
- 民辦職業(yè)培訓(xùn)方案模板
- 04S519小型排水構(gòu)筑物(含隔油池)圖集
- 旅居養(yǎng)老可行性方案
評論
0/150
提交評論