安徽交通職業(yè)技術(shù)學(xué)院《Hadoop技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
安徽交通職業(yè)技術(shù)學(xué)院《Hadoop技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
安徽交通職業(yè)技術(shù)學(xué)院《Hadoop技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
安徽交通職業(yè)技術(shù)學(xué)院《Hadoop技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
安徽交通職業(yè)技術(shù)學(xué)院《Hadoop技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁安徽交通職業(yè)技術(shù)學(xué)院《Hadoop技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的性能可以通過多種指標(biāo)進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)挖掘算法性能評(píng)估指標(biāo)的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘算法的性能可以通過準(zhǔn)確率、召回率、F1值等指標(biāo)進(jìn)行評(píng)估B.數(shù)據(jù)挖掘算法的性能評(píng)估指標(biāo)應(yīng)根據(jù)具體的問題和數(shù)據(jù)特點(diǎn)來選擇C.數(shù)據(jù)挖掘算法的性能評(píng)估指標(biāo)只需要考慮算法的準(zhǔn)確性,其他因素可以忽略不計(jì)D.數(shù)據(jù)挖掘算法的性能評(píng)估應(yīng)在不同的數(shù)據(jù)集上進(jìn)行測(cè)試,以確保結(jié)果的可靠性2、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來值是常見的任務(wù)。假設(shè)你要預(yù)測(cè)股票價(jià)格的未來走勢(shì),以下關(guān)于時(shí)間序列模型的選擇,哪一項(xiàng)是最需要謹(jǐn)慎考慮的?()A.選擇簡(jiǎn)單的移動(dòng)平均模型,基于歷史均值進(jìn)行預(yù)測(cè)B.應(yīng)用自回歸整合移動(dòng)平均(ARIMA)模型,考慮序列的趨勢(shì)和季節(jié)性C.采用深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)D.不考慮時(shí)間序列的特點(diǎn),使用通用的回歸模型3、對(duì)于數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù),假設(shè)處理的數(shù)據(jù)包含敏感的個(gè)人信息。以下哪種方法可能有助于在數(shù)據(jù)分析過程中確保數(shù)據(jù)的安全性和合規(guī)性?()A.數(shù)據(jù)匿名化,去除可識(shí)別個(gè)人的信息B.加密技術(shù),對(duì)數(shù)據(jù)進(jìn)行加密處理C.訪問控制,限制對(duì)數(shù)據(jù)的訪問權(quán)限D(zhuǎn).不采取任何保護(hù)措施,直接處理數(shù)據(jù)4、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)抽樣可以減少數(shù)據(jù)分析的時(shí)間和成本,同時(shí)保證樣本具有代表性B.隨機(jī)抽樣是一種常用的數(shù)據(jù)抽樣方法,能夠確保每個(gè)數(shù)據(jù)點(diǎn)被選中的概率相等C.分層抽樣可以根據(jù)某些特征將數(shù)據(jù)分為不同層次,然后從各層次中進(jìn)行抽樣D.數(shù)據(jù)抽樣的樣本大小越大,分析結(jié)果就越準(zhǔn)確,因此應(yīng)盡量選擇大樣本5、對(duì)于一個(gè)具有時(shí)間序列特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)測(cè),以下哪種模型可能會(huì)考慮時(shí)間的滯后效應(yīng)?()A.自回歸移動(dòng)平均模型B.支持向量回歸模型C.隨機(jī)森林回歸模型D.以上都可能6、對(duì)于數(shù)據(jù)分析中的分類問題,假設(shè)要預(yù)測(cè)一個(gè)郵件是否為垃圾郵件,基于郵件的內(nèi)容、發(fā)件人、主題等特征。以下哪種分類算法在處理這種文本分類任務(wù)時(shí)可能效果較好?()A.決策樹,通過一系列規(guī)則進(jìn)行分類B.支持向量機(jī),尋找最優(yōu)分類超平面C.樸素貝葉斯,基于概率進(jìn)行分類D.不進(jìn)行分類,將所有郵件視為正常郵件7、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。在進(jìn)行雙側(cè)檢驗(yàn)時(shí),如果P值小于0.05,我們可以得出什么結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無法得出結(jié)論D.原假設(shè)可能成立8、在進(jìn)行數(shù)據(jù)分析時(shí),若要檢驗(yàn)兩個(gè)總體的方差是否相等,應(yīng)使用哪種檢驗(yàn)方法?()A.F檢驗(yàn)B.t檢驗(yàn)C.卡方檢驗(yàn)D.秩和檢驗(yàn)9、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集,其中包含大量相關(guān)的特征,通過PCA進(jìn)行降維時(shí),以下哪個(gè)說法是正確的?()A.降維后的主成分?jǐn)?shù)量一定少于原始特征數(shù)量B.主成分是原始特征的線性組合C.降維過程會(huì)丟失部分?jǐn)?shù)據(jù)信息D.以上都是10、對(duì)于一個(gè)具有多個(gè)變量的數(shù)據(jù)集合,若要進(jìn)行降維處理,以下哪種方法可能會(huì)被使用?()A.主成分分析B.線性判別分析C.獨(dú)立成分分析D.以上都是11、假設(shè)要分析社交媒體上的輿論趨勢(shì),以下關(guān)于輿論分析方法的描述,正確的是:()A.只統(tǒng)計(jì)帖子的數(shù)量就能了解輿論的走向B.對(duì)帖子的內(nèi)容進(jìn)行情感分析和主題提取,綜合判斷輿論趨勢(shì)C.忽略社交媒體平臺(tái)的特點(diǎn)和用戶行為,直接進(jìn)行分析D.輿論分析不需要考慮時(shí)間因素,只關(guān)注當(dāng)前的熱門話題12、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能夠更好地描述數(shù)據(jù)特征。假設(shè)我們有一組學(xué)生的考試成績(jī)數(shù)據(jù),以下關(guān)于統(tǒng)計(jì)指標(biāo)選擇的描述,正確的是:()A.計(jì)算均值可以準(zhǔn)確反映學(xué)生成績(jī)的平均水平,不受極端值影響B(tài).中位數(shù)能夠避免極端值的干擾,更好地代表成績(jī)的一般水平C.眾數(shù)適用于描述成績(jī)的集中趨勢(shì),尤其當(dāng)數(shù)據(jù)分布均勻時(shí)D.方差越大,說明學(xué)生成績(jī)?cè)椒€(wěn)定,教學(xué)質(zhì)量越高13、在時(shí)間序列數(shù)據(jù)分析中,除了預(yù)測(cè)未來值,還可以進(jìn)行季節(jié)性分析。假設(shè)我們有一個(gè)銷售數(shù)據(jù)的時(shí)間序列,顯示出明顯的季節(jié)性特征,以下哪種方法可以用于提取和分析季節(jié)性成分?()A.季節(jié)指數(shù)法B.移動(dòng)平均季節(jié)分解法C.加法模型D.以上都是14、在數(shù)據(jù)挖掘中,以下哪種算法常用于對(duì)客戶進(jìn)行分類,以實(shí)現(xiàn)精準(zhǔn)營銷?()A.決策樹算法B.關(guān)聯(lián)規(guī)則算法C.神經(jīng)網(wǎng)絡(luò)算法D.遺傳算法15、在數(shù)據(jù)分析的過程中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。為了獲得高質(zhì)量的數(shù)據(jù)用于后續(xù)分析,以下哪種數(shù)據(jù)清洗方法是首先應(yīng)該考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過數(shù)據(jù)驗(yàn)證規(guī)則修正錯(cuò)誤數(shù)據(jù)D.利用機(jī)器學(xué)習(xí)算法預(yù)測(cè)缺失值16、在評(píng)估數(shù)據(jù)分析模型的性能時(shí),以下指標(biāo)中,不能用于分類問題的是:()A.準(zhǔn)確率B.均方誤差C.召回率D.F1值17、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中關(guān)聯(lián)規(guī)則挖掘是一種常用的方法。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述中,錯(cuò)誤的是?()A.關(guān)聯(lián)規(guī)則挖掘可以用來發(fā)現(xiàn)數(shù)據(jù)中不同變量之間的關(guān)聯(lián)關(guān)系B.關(guān)聯(lián)規(guī)則挖掘的結(jié)果可以用支持度和置信度來衡量C.關(guān)聯(lián)規(guī)則挖掘只適用于數(shù)值型數(shù)據(jù),對(duì)于分類型數(shù)據(jù)無法處理D.關(guān)聯(lián)規(guī)則挖掘可以幫助企業(yè)進(jìn)行商品推薦和營銷策略制定18、在進(jìn)行數(shù)據(jù)聚類時(shí),需要確定合適的聚類數(shù)量。假設(shè)我們使用K-Means算法進(jìn)行聚類,以下哪種方法可以幫助我們選擇最優(yōu)的K值?()A.肘部法則B.輪廓系數(shù)C.均方誤差D.以上都是19、在建立分類模型時(shí),如果數(shù)據(jù)存在類別不平衡問題,以下哪種技術(shù)可以用于數(shù)據(jù)增強(qiáng)?()A.生成對(duì)抗網(wǎng)絡(luò)B.自編碼器C.變分自編碼器D.以上都不是20、對(duì)于一個(gè)包含時(shí)間戳的數(shù)據(jù),若要按照時(shí)間順序進(jìn)行分組并計(jì)算每組的統(tǒng)計(jì)量,以下哪種方法在Python中較為便捷?()A.使用pd.Grouper函數(shù)B.自定義函數(shù)進(jìn)行分組C.先對(duì)時(shí)間戳進(jìn)行排序,再進(jìn)行分組D.以上方法都可行21、假設(shè)要分析一個(gè)電商平臺(tái)的用戶評(píng)論數(shù)據(jù),以提取用戶的意見和情感傾向。以下哪種自然語言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識(shí)別D.以上都是22、在數(shù)據(jù)清洗過程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對(duì)異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再?zèng)Q定處理方式23、在數(shù)據(jù)分析中的分類算法評(píng)估指標(biāo)中,以下關(guān)于準(zhǔn)確率和召回率的說法,不正確的是()A.準(zhǔn)確率是指分類正確的樣本數(shù)占總樣本數(shù)的比例B.召回率是指被正確分類的正例樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.在某些情況下,準(zhǔn)確率和召回率可能存在矛盾,需要根據(jù)具體問題權(quán)衡二者的重要性D.為了綜合評(píng)估分類算法的性能,只需要關(guān)注準(zhǔn)確率和召回率其中一個(gè)指標(biāo)即可,另一個(gè)可以忽略24、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫是存儲(chǔ)和管理數(shù)據(jù)的重要工具。以下關(guān)于數(shù)據(jù)倉庫的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉庫可以整合來自不同數(shù)據(jù)源的數(shù)據(jù),為數(shù)據(jù)分析提供統(tǒng)一的數(shù)據(jù)視圖B.數(shù)據(jù)倉庫中的數(shù)據(jù)通常是經(jīng)過清洗和轉(zhuǎn)換的,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉庫的建設(shè)需要投入大量的時(shí)間和資源,且維護(hù)成本較高D.數(shù)據(jù)倉庫只適用于大型企業(yè),對(duì)于中小企業(yè)來說沒有必要建設(shè)25、在數(shù)據(jù)分析中,數(shù)據(jù)分析的結(jié)果需要進(jìn)行解釋和評(píng)估。以下關(guān)于結(jié)果解釋和評(píng)估的描述中,錯(cuò)誤的是?()A.結(jié)果解釋應(yīng)該結(jié)合問題的背景和目的,進(jìn)行合理的分析和推斷B.結(jié)果評(píng)估應(yīng)該使用客觀的指標(biāo)和方法,進(jìn)行準(zhǔn)確的評(píng)價(jià)和判斷C.結(jié)果解釋和評(píng)估可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿足不同的需求D.結(jié)果解釋和評(píng)估只需要關(guān)注數(shù)據(jù)分析的結(jié)果,無需考慮數(shù)據(jù)的質(zhì)量和可靠性二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)在數(shù)據(jù)可視化方面,如何根據(jù)數(shù)據(jù)特點(diǎn)和分析目的選擇合適的圖表類型,如柱狀圖、折線圖、餅圖等?請(qǐng)舉例說明。2、(本題5分)闡述數(shù)據(jù)分析中的特征工程中的特征編碼方法,如獨(dú)熱編碼、數(shù)值編碼等的原理和適用場(chǎng)景,并舉例說明在機(jī)器學(xué)習(xí)中的應(yīng)用。3、(本題5分)在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),如何考慮外部因素的影響?請(qǐng)舉例說明如何將外部因素納入預(yù)測(cè)模型中。4、(本題5分)解釋什么是膠囊網(wǎng)絡(luò)(CapsuleNetwork),說明其在圖像數(shù)據(jù)分析中的特點(diǎn)和優(yōu)勢(shì),并舉例分析。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線健身器材租賃平臺(tái)積累了租賃數(shù)據(jù)、器材維護(hù)情況、用戶租賃時(shí)長(zhǎng)等。優(yōu)化健身器材租賃的服務(wù)流程和維護(hù)管理。2、(本題5分)某電商平臺(tái)記錄了用戶的搜索關(guān)鍵詞、瀏覽商品類別、購買決策時(shí)間等。探討怎樣利用這些數(shù)據(jù)優(yōu)化搜索引擎和購物流程。3、(本題5分)某在線健身平臺(tái)掌握了用戶的運(yùn)動(dòng)項(xiàng)目選擇、訓(xùn)練計(jì)劃完成情況、飲食記錄等。思考如何通過這些數(shù)據(jù)為用戶提供更科學(xué)的健身方案和營養(yǎng)建議。4、(本題5分)某餐飲企業(yè)收集了不同門店在不同時(shí)間段的客流量、銷售額、菜品評(píng)價(jià)等。思考如何通過這些數(shù)據(jù)優(yōu)化門店的營業(yè)時(shí)間和菜單設(shè)計(jì)。5、(本題5分)一家運(yùn)動(dòng)品牌的籃球裝備銷售數(shù)據(jù)涵蓋產(chǎn)品款式、價(jià)格、銷售地區(qū)、賽事活動(dòng)等。研究不同銷售地區(qū)在賽事活動(dòng)期間對(duì)籃球裝備的需求和價(jià)格敏感度。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)醫(yī)療健康領(lǐng)域的可穿戴設(shè)備產(chǎn)生了個(gè)人健康數(shù)據(jù),如何對(duì)這些數(shù)據(jù)進(jìn)行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論