難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測評(píng)試題(含詳細(xì)解析)_第1頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測評(píng)試題(含詳細(xì)解析)_第2頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測評(píng)試題(含詳細(xì)解析)_第3頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測評(píng)試題(含詳細(xì)解析)_第4頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測評(píng)試題(含詳細(xì)解析)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖所示,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則最小值為()A.2 B.3 C.4 D.62、如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),于點(diǎn)C.已知,.點(diǎn)B到原點(diǎn)的最大距離為()A.22 B.18 C.14 D.103、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點(diǎn)O為圓心,對(duì)角線OB的長為半徑畫弧,交正半軸于一點(diǎn),則這個(gè)點(diǎn)表示的實(shí)數(shù)是()A.2.5 B.2 C. D.4、如圖,把一張長方形紙片ABCD沿AF折疊,使B點(diǎn)落在處,若,要使,則的度數(shù)應(yīng)為()A.20° B.55° C.45° D.60°5、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(

)A.②④ B.①②④

C.①②③④

D.②③④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,正方形的邊長為4,它的兩條對(duì)角線交于點(diǎn),過點(diǎn)作邊的垂線,垂足為,的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.2、一個(gè)三角形三邊長之比為4∶5∶6,三邊中點(diǎn)連線組成的三角形的周長為30cm,則原三角形最大邊長為_________cm.3、如圖,在四邊形中,,分別是的中點(diǎn),分別以為直徑作半圓,這兩個(gè)半圓面積的和為,則的長為_______.4、能使平行四邊形ABCD為正方形的條件是___________(填上一個(gè)符合題目要求的條件即可).5、若一個(gè)菱形的兩條對(duì)角線的長為3和4,則菱形的面積為___________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,將長方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.(1)試判斷△BDE的形狀,并說明理由;(2)若AB=6,BC=18,求△BDE的面積.2、如圖,△ABC為等邊三角形,點(diǎn)D為線段BC上一點(diǎn),將線段AD以點(diǎn)A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)60°得到線段AE,連接BE,點(diǎn)D關(guān)于直線BE的對(duì)稱點(diǎn)為F,BE與DF交于點(diǎn)G,連接DE,EF.(1)求證:∠BDF=30°(2)若∠EFD=45°,AC=+1,求BD的長;(3)如圖2,在(2)條件下,以點(diǎn)D為頂點(diǎn)作等腰直角△DMN,其中DN=MN=,連接FM,點(diǎn)O為FM的中點(diǎn),當(dāng)△DMN繞點(diǎn)D旋轉(zhuǎn)時(shí),求證:EO的最大值等于BC.3、已知:如圖,,,AD是BC上的高線,CE是AB邊上的中線,于G.(1)若,求線段AC的長;(2)求證:.4、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.5、如圖,將□ABCD的邊DC延長到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F,連接AC、BE.(1)求證:四邊形ABEC是平行四邊形;(2)若∠AFC=2∠ADC,求證:四邊形ABEC是矩形.-參考答案-一、單選題1、C【解析】【分析】先求得正方形的邊長,依據(jù)等邊三角形的定義可知BE=AB=4,連接BP,依據(jù)正方形的對(duì)稱性可知PB=PD,則PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值為BE的長.【詳解】解:連接BP.∵四邊形ABCD為正方形,面積為16,∴正方形的邊長為4.∵△ABE為等邊三角形,∴BE=AB=4.∵四邊形ABCD為正方形,∴△ABP與△ADP關(guān)于AC對(duì)稱.∴BP=DP.∴PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值=BE=4.故選:C.【點(diǎn)睛】本題考查的是等邊三角形的性質(zhì)、正方形的性質(zhì)和軸對(duì)稱—最短路線問題,熟知“兩點(diǎn)之間,線段最短”是解答此題的關(guān)鍵.2、B【解析】【分析】首先取AC的中點(diǎn)E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關(guān)系,求得點(diǎn)B到原點(diǎn)的最大距離.【詳解】解:取AC的中點(diǎn)E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點(diǎn)O,E,B不在一條直線上,則OB<OE+BE=18.若點(diǎn)O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點(diǎn)在一條直線上時(shí),OB取得最大值,最大值為18.故選:B【點(diǎn)睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、D【解析】【分析】利用矩形的性質(zhì),求證明,進(jìn)而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點(diǎn)表示,求出弧與數(shù)軸交點(diǎn)表示的實(shí)數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點(diǎn)的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.4、B【解析】【分析】設(shè)直線AF與BD的交點(diǎn)為G,由題意易得,則有,由折疊的性質(zhì)可知,由平行線的性質(zhì)可得,然后可得,進(jìn)而問題可求解.【詳解】解:設(shè)直線AF與BD的交點(diǎn)為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質(zhì)可知,∵,∴,∴,∴;故選B.【點(diǎn)睛】本題主要考查折疊的性質(zhì)及矩形的性質(zhì),熟練掌握折疊的性質(zhì)及矩形的性質(zhì)是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對(duì)①作出判斷;延長EF,交CD延長線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對(duì)②作出判斷;由△AEF≌△DMF可得這兩個(gè)三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯(cuò)誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計(jì)算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點(diǎn),∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點(diǎn),∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯(cuò)誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識(shí),構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點(diǎn).二、填空題1、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過計(jì)算三角形的面積得出規(guī)律.2、24【解析】【分析】由三邊長之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長求出三中位線長,推出邊長,再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點(diǎn)∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長∴故填24.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.3、4【解析】【分析】根據(jù)題意連接BD,取BD的中點(diǎn)M,連接EM、FM,EM交BC于N,根據(jù)三角形的中位線定理推出EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根據(jù)勾股定理求出ME2+FM2=EF2,根據(jù)圓的面積公式求出陰影部分的面積即可.【詳解】解:連接BD,取BD的中點(diǎn)M,連接EM、FM,延長EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分別是AD、BC、BD的中點(diǎn),∴EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴陰影部分的面積是:π(ME2+FM2)=EF2π=8π,∴EF=4.故答案為:4.【點(diǎn)睛】本題主要考查對(duì)勾股定理,三角形的內(nèi)角和定理,多邊形的內(nèi)角和定理,三角形的中位線定理,圓的面積,平行線的性質(zhì),面積與等積變形等知識(shí)點(diǎn)的理解和掌握,能正確作輔助線并求出ME2+FM2的值是解答此題的關(guān)鍵.4、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當(dāng)AC=BD時(shí),平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當(dāng)AC=BD且AC⊥BD時(shí),平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點(diǎn)睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.5、6【解析】【分析】由題意直接由菱形的面積等于對(duì)角線乘積的一半進(jìn)行計(jì)算即可.【詳解】解:菱形的面積.故答案為:6.【點(diǎn)睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對(duì)角線乘積的一半是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)30【分析】(1)根據(jù)折疊的性質(zhì)以及矩形的性質(zhì)可得結(jié)果;(2)設(shè)DE=x,則BE=x,AE=18﹣x,在Rt△ABE中,由勾股定理列方程求解.【詳解】解:(1)△BDE是等腰三角形.由折疊可知,∠CBD=∠EBD,∵AD∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE,即△BDE是等腰三角形;(2)設(shè)DE=x,則BE=x,AE=18﹣x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即62+(18﹣x)2=x2,解得:x=10,所以S△BDE=DE×AB=×10×6=30.【點(diǎn)睛】本題考查了等腰三角形的判定,矩形與折疊的性質(zhì),勾股定理等知識(shí)點(diǎn),熟練掌握相關(guān)的性質(zhì)以及定理是解本題的關(guān)鍵.2、(1)見解析;(2)2;(3)見解析【分析】(1)由△ABC是等邊三角形,可得∠ABC=60°,由D、F關(guān)于直線BE對(duì)稱,得到BF=BD,則∠BFD=∠BDF,由三角形外角的性質(zhì)得到∠BFD+∠BDF=∠ABD,則∠BDF=∠BFD=30°;(2)設(shè),由D、F關(guān)于直線BE對(duì)稱,得到∠BGD=∠BGF=90°,EF=ED,EG=DG,由含30度角的直角三角形的性質(zhì)和勾股定理得,,證明△EAB≌△DAC得到,再由,得到,由此求解即可;(3)連接OG,先求出,證明OG是三角形DMF的中位線,得到,再根據(jù)兩點(diǎn)之間線段最短可知,則OE的最大值等于BC.【詳解】解:(1)∵△ABC是等邊三角形,∴∠ABC=60°,∵D、F關(guān)于直線BE對(duì)稱,∴BF=BD,∴∠BFD=∠BDF,∵∠BFD+∠BDF=∠ABD,∴∠BDF=∠BFD=30°;(2)設(shè),∵D、F關(guān)于直線BE對(duì)稱,∴∠BGD=∠BGF=90°,EF=ED,∴∠EDG=EFG=45°,∴EG=DG,∵∠BDG=30°,∴,∴,由旋轉(zhuǎn)的性質(zhì)可得AE=AD,∠EAD=∠BAC=60°,∴∠EAB+∠BAD=∠CAD+∠BAD,即∠EAB=∠DAC,又∵AB=AC,∴△EAB≌△DAC(SAS),∴,∵,∴,∴,∴;(3)如圖所示,連接OG,∵在等腰直角三角形DMN中,,∴,∵D、F關(guān)于直線BE對(duì)稱,∴G為DF的中點(diǎn),又∵O為FM的中點(diǎn),∴OG是三角形DMF的中位線,∴,由(2)可得,根據(jù)兩點(diǎn)之間線段最短可知,∴OE的最大值等于BC.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),軸對(duì)稱的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,含30度角的直角三角形性質(zhì),三角形中位線定理,兩點(diǎn)之間線段最短等等,解題的關(guān)鍵在于能夠熟練掌握軸對(duì)稱的性質(zhì)和等邊三角形的性質(zhì).3、(1);(2)見解析【分析】(1)根據(jù)30°角所對(duì)直角邊等于斜邊的一半,得到AD=3,根據(jù)等腰直角三角形,得到CD=AD=3,根據(jù)勾股定理,得到AC的長即可;(2)根據(jù)斜邊上的中線等于斜邊的一半,得到DE=DC,根據(jù)等腰三角形三線合一性質(zhì),證明即可.【詳解】(1),;(2)連接DE,,,,,,.【點(diǎn)睛】本題考查了30°角的性質(zhì),等腰直角三角形的性質(zhì),斜邊上中線的性質(zhì),等腰三角形三線合一性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.4、(1)見詳解;(2)見詳解【分析】(1)根據(jù)平行四邊形的判定定理得四邊形是平行四邊形,進(jìn)而即可得到結(jié)論;(2)先推出∠EBC=∠DCB,進(jìn)而可得∠EBC=∠DCB=90°,然后得到結(jié)論.【詳解】(1)證明:∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論