版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,在中,,,若以點(diǎn)為圓心,的長為半徑的圓恰好經(jīng)過的中點(diǎn),則的長等于()A. B. C. D.2、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計(jì)這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6203、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.4、如圖,為正六邊形邊上一動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿六邊形的邊以1cm/s的速度按逆時(shí)針方向運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)停止.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,以點(diǎn)、、為頂點(diǎn)的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.5、同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.6、如圖,ABCD是正方形,△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形7、如圖是由幾個(gè)小立方體所搭成的幾何體從上面看到的平面圖形,小正方形中的數(shù)字表示在該位置小立方體的個(gè)數(shù),則這個(gè)幾何體從正面看到的平面圖形為()A. B. C. D.8、下列判斷正確的個(gè)數(shù)有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等??;③半徑相等的兩個(gè)圓是等圓;④弧分優(yōu)弧和劣弧;⑤同一條弦所對的兩條弧一定是等?。瓵.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、已知60°的圓心角所對的弧長是3.14厘米,則它所在圓的周長是______厘米.2、某射擊運(yùn)動(dòng)員在同一條件下的射擊成績記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過計(jì)算頻率,估計(jì)這名運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點(diǎn)后一位).3、第24屆世界冬季奧林匹克運(yùn)動(dòng)會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運(yùn)會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內(nèi)隨機(jī)投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點(diǎn)都是等可能的),經(jīng)過大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計(jì)宣傳畫上北京冬奧會會徽圖案的面積約為______.4、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點(diǎn)O,∠BOC=60°,分別在、線段AB和AC上選取點(diǎn)P、E、F,則PE+EF+FP的最小值為____________.5、如圖,在⊙O中,∠BOC=80°,則∠A=___________°.6、過年時(shí)包了100個(gè)餃子,其中有10個(gè)餃子包有幸運(yùn)果,任意挑選一個(gè)餃子,正好是包有幸運(yùn)果餃子的概率是_____.7、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn),過點(diǎn)A作軸,做直線AC平行x軸,點(diǎn)D是二次函數(shù)的圖象與x軸的一個(gè)公共點(diǎn)(點(diǎn)D與點(diǎn)O不重合).(1)求點(diǎn)D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時(shí)的二次函數(shù)表達(dá)式.(3)在(2)的條件下,如圖2,P為OC的中點(diǎn),在直線AC上取一點(diǎn)M,連接PM,做點(diǎn)C關(guān)于PM的對稱點(diǎn)N,①連接AN,求AN的最小值.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,求直線MN的函數(shù)表達(dá)式.2、如圖,在⊙O中,點(diǎn)E是弦CD的中點(diǎn),過點(diǎn)O,E作直徑AB(AE>BE),連接BD,過點(diǎn)C作CFBD交AB于點(diǎn)G,交⊙O于點(diǎn)F,連接AF.求證:AG=AF.3、解題與遐想.如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實(shí)非常神奇了…數(shù)學(xué)劉老師:大家想一想,既然結(jié)果如此簡單到極致,不計(jì)算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個(gè)東西,這個(gè)圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計(jì)算驗(yàn)證(1)通過計(jì)算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請?jiān)趫D中畫出拼圖后的4個(gè)直角三角形甲、乙、丙、丁的位置,作必要標(biāo)注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點(diǎn)D在線段AB上,以AB為斜邊求作一個(gè)Rt△ABC,使它的內(nèi)切圓與斜邊AB相切于點(diǎn)D.(保留作圖的痕跡,寫出必要的文字說明)4、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時(shí)期吳國的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個(gè)形狀、大小完全相同的直角三角形組成,趙爽利用這個(gè)“弦圖”對勾股定理作出了證明,是中國古代數(shù)學(xué)的一項(xiàng)重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個(gè)直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個(gè)直角三角形通過你所學(xué)過的圖形變換,在圖2,3的方格紙中設(shè)計(jì)另外兩個(gè)不同的圖案,畫圖要求:①每個(gè)直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個(gè)三角形互不重疊,不必涂陰影;②圖2中所設(shè)計(jì)的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設(shè)計(jì)的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.5、如圖,是的弦,是上的一點(diǎn),且,于點(diǎn),交于點(diǎn).若的半徑為6,求弦的長.6、某省高考采用“3+1+2”模式:“3”是指語文、數(shù)學(xué)、英語3科為必選科目,“1”是指在物理、歷史2科中任選1科,“2”是指在思想政治、化學(xué)、生物、地理4科中任選2科.(1)假定在“1”中選擇歷史,在“2”中已選擇地理,則選擇生物的概率是________;(2)求同時(shí)選擇物理、化學(xué)、生物的概率.7、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個(gè)問題:如圖1,在平面直角坐標(biāo)系xOy中,OA經(jīng)過坐標(biāo)原點(diǎn)O,并與兩坐標(biāo)軸分別交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為,點(diǎn)D在上,且,求OA的半徑和圓心A的坐標(biāo).元元的做法如下,請你幫忙補(bǔ)全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標(biāo)為(④)的半徑為⑤-參考答案-一、單選題1、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進(jìn)而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點(diǎn)D是AB的中點(diǎn),,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點(diǎn)睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.2、C【分析】根據(jù)頻率估計(jì)概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時(shí),頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點(diǎn)睛】本題主要考查了利用頻率估計(jì)概率,概率的得出是在大量實(shí)驗(yàn)的基礎(chǔ)上得出的,不能單純的依靠幾次決定.3、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計(jì)算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點(diǎn)睛】本題考查了扇形的面積,等邊三角形等知識.解題的關(guān)鍵在于用扇形表示陰影面積.4、A【分析】設(shè)正六邊形的邊長為1,當(dāng)在上時(shí),過作于而求解此時(shí)的函數(shù)解析式,當(dāng)在上時(shí),延長交于點(diǎn)過作于并求解此時(shí)的函數(shù)解析式,當(dāng)在上時(shí),連接并求解此時(shí)的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當(dāng)在上時(shí),過作于而當(dāng)在上時(shí),延長交于點(diǎn)過作于同理:則為等邊三角形,當(dāng)在上時(shí),連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點(diǎn)睛】本題考查的是動(dòng)點(diǎn)問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.5、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:
.故選A.【點(diǎn)睛】本題考查了列舉法求概率的知識.此題比較簡單,注意在利用列舉法求解時(shí),要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.6、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.7、B【分析】幾何體從上面看到的每個(gè)數(shù)字是該位置小立方體的個(gè)數(shù),可得從正面看共有3列,2層,從左往右的每列的小立方體的個(gè)數(shù)為1,2,1,從上往下的每層的小立方體的個(gè)數(shù)為1,3,即可求解【詳解】解:幾何體從上面看到的每個(gè)數(shù)字是該位置小立方體的個(gè)數(shù),可得從正面看共有3列,2層,從左往右每列的小立方體的個(gè)數(shù)為1,2,1,從上往下每層的小立方體的個(gè)數(shù)為1,3,所以這個(gè)幾何體從正面看到的平面圖形為故選:B【點(diǎn)睛】本題主要考查了幾何體的三視圖,熟練掌握三視圖是觀測者從三個(gè)不同位置觀察同一個(gè)幾何體,畫出的平面圖形;(1)從正面看:從物體前面向后面正投影得到的投影圖,它反映了空間幾何體的高度和長度;(2)從側(cè)面看:從物體左面向右面正投影得到的投影圖,它反映了空間幾何體的高度和寬度;(3)從上面看:從物體上面向下面正投影得到的投影圖,它反應(yīng)了空間幾何體的長度和寬度是解題的關(guān)鍵.8、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等??;故②不正確③半徑相等的兩個(gè)圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對的兩條弧可位于弦的兩側(cè),故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點(diǎn)睛】本題考查了圓相關(guān)概念,掌握弦與弧的關(guān)系以及相關(guān)概念是解題的關(guān)鍵.二、填空題1、18.84【分析】先根據(jù)弧長公式求得πr,然后再運(yùn)用圓的周長公式解答即可.【詳解】解:設(shè)圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長為(厘米),故答案為:.【點(diǎn)睛】本題主要考查了弧長公式、圓的周長公式等知識點(diǎn),牢記弧長公式是解答本題的關(guān)鍵.2、0.8【分析】重復(fù)試驗(yàn)次數(shù)越多,其頻率越能估計(jì)概率,求出射擊1000次時(shí)的頻率即可.【詳解】解:由題意可知射擊1000次時(shí),運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的頻率為∴用頻率估計(jì)概率為0.801,保留小數(shù)點(diǎn)后一位可知概率值為0.8故答案為:0.8.【點(diǎn)睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計(jì)概率時(shí)要在重復(fù)試驗(yàn)次數(shù)盡可能多的情況下.3、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點(diǎn)睛】題目主要考查根據(jù)頻率計(jì)算滿足條件的情況,理解題意,熟練掌握頻率的計(jì)算方法是解題關(guān)鍵.4、12【分析】如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當(dāng)MN的值最小時(shí),△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當(dāng)PA的值最小時(shí),MN的值最小,取AB的中點(diǎn)J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當(dāng)點(diǎn)P在直線OA上時(shí),PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點(diǎn)睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.5、40°度【分析】直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:與是同弧所對的圓心角與圓周角,,.故答案為:.【點(diǎn)睛】本題考查的是圓周角定理,解題的關(guān)鍵是熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.6、【分析】直接利用概率公式進(jìn)行計(jì)算即可.【詳解】解:過年時(shí)包了100個(gè)餃子,有10個(gè)餃子包有幸運(yùn)果,任意挑選一個(gè)餃子,正好是包有幸運(yùn)果餃子的概率是故答案為:【點(diǎn)睛】本題考查的是簡單隨機(jī)事件的概率,熟練的利用概率公式進(jìn)行計(jì)算是解本題的關(guān)鍵;概率的含義:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.7、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點(diǎn)睛】本題考查了弧長的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.三、解答題1、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動(dòng),當(dāng)P、N、A同側(cè)且共線時(shí),AN最小,用勾股定理計(jì)算即可.②分點(diǎn)M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點(diǎn)D的橫坐標(biāo)為2b.(2)設(shè)w=,∵點(diǎn)D的橫坐標(biāo)為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當(dāng)b=1時(shí),w有最大值,最大值為4,此時(shí)拋物線的解析式為.(3)①∵點(diǎn)A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點(diǎn),∴OP=PC=2,∵點(diǎn)C關(guān)于PM的對稱點(diǎn)N,∴OP=PC=PN=2,∴點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動(dòng),如圖所示,當(dāng)P、N、A同側(cè)且共線時(shí),AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點(diǎn)H,交x軸于點(diǎn)Q,過點(diǎn)P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點(diǎn)N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點(diǎn)M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當(dāng)點(diǎn)N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點(diǎn)T,交x軸于點(diǎn)R,過點(diǎn)P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點(diǎn)N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點(diǎn)M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運(yùn)用對稱的思想和勾股定理是解題的關(guān)鍵.2、見解析【分析】由題意易得AB⊥CD,,則有,由平行線的性質(zhì)可得,然后可得,進(jìn)而問題可求證.【詳解】證明:∵AB為⊙O的直徑,點(diǎn)E是弦CD的中點(diǎn),∴AB⊥CD,∴,∴,∵CF∥BD,∴,∴,∴.【點(diǎn)睛】本題主要考查垂徑定理、平行線的性質(zhì)及圓周角定理,熟練掌握垂徑定理、平行線的性質(zhì)及圓周角定理是解題的關(guān)鍵.3、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設(shè)⊙O的半徑為r,由切線長定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進(jìn)而求得結(jié)果;(2)根據(jù)切線長定理可證明甲和乙兩個(gè)三角形全等,丙丁兩個(gè)三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以O(shè)P為邊放在右側(cè),圍成矩形的邊長是4和5;(3)可先計(jì)算∠AFB=135°,根據(jù)“定弦對定角”作F點(diǎn)的軌跡,根據(jù)切線性質(zhì),過點(diǎn)F作AB的垂線,再根據(jù)直徑所對的圓周角是90°,確定點(diǎn)C.【詳解】解:(1)如圖1,設(shè)⊙O的半徑為r,連接OE,OF,∵⊙O內(nèi)切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設(shè)△ABC的內(nèi)切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,F(xiàn)D⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步驟作圖(如圖3):①以BA為直徑作圓,作AB的垂直平分線交圓于點(diǎn)E,②以E為圓心,AE為半徑作圓,③過點(diǎn)D作AB的垂線,交圓于F,④連接EF并延長交圓于C,連接AC,BC,則△ABC就是求作的三角形.【點(diǎn)睛】本題考查三角形的內(nèi)切圓性質(zhì)、切線長定理、勾股定理、矩形的判定與性質(zhì)、尺規(guī)作圖-作垂線,熟練掌握相關(guān)知識的聯(lián)系與運(yùn)用是解答的關(guān)鍵.4、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個(gè)直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個(gè)三角形不重疊,是軸對稱圖形;②所設(shè)計(jì)的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個(gè)直角三角形組成的圖形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電機(jī)與電氣控制技術(shù) 課件 任務(wù)7.1.1交流異步電機(jī)的調(diào)速控制
- 某著名企業(yè)高層管理人員薪酬調(diào)查報(bào)告0729
- 人血白蛋白臨床使用規(guī)范總結(jié)2026
- 《GBT 9734-2008化學(xué)試劑 鋁測定通 用方法》專題研究報(bào)告
- 《GBT 5009.49-2008發(fā)酵酒及其配制酒衛(wèi)生標(biāo)準(zhǔn)的分析方法》專題研究報(bào)告
- 《GBT 22402-2008攝影 加工用化學(xué)品 無水硫代硫酸鈉和五水合硫代硫酸鈉》專題研究報(bào)告長文
- 《FZT 52048-2017有機(jī)阻燃粘膠短纖維》專題研究報(bào)告
- 道路安全教育培訓(xùn)班課件
- 道路交通類法律培訓(xùn)課件
- 2026年高校時(shí)政熱點(diǎn)試題含解析及答案
- 眼鏡驗(yàn)光師試題(及答案)
- 選人用人方面存在的問題及改進(jìn)措施
- 項(xiàng)目管理流程標(biāo)準(zhǔn)作業(yè)程序手冊
- 自我介紹禮儀課件
- 衛(wèi)生院孕優(yōu)知識培訓(xùn)課件
- 2025-2030工業(yè)窯爐煙氣多污染物協(xié)同控制技術(shù)
- 培訓(xùn)機(jī)構(gòu)臺賬
- 電商預(yù)算表格財(cái)務(wù)模板全年計(jì)劃表格-做賬實(shí)操
- 泵車日常管理辦法
- 骨科術(shù)后疼痛評估與護(hù)理查房
- 輸液泵的使用培訓(xùn)課件
評論
0/150
提交評論