難點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測(cè)試試卷(含答案詳解版)_第1頁
難點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測(cè)試試卷(含答案詳解版)_第2頁
難點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測(cè)試試卷(含答案詳解版)_第3頁
難點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測(cè)試試卷(含答案詳解版)_第4頁
難點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測(cè)試試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省霍州市中考數(shù)學(xué)真題分類(勾股定理)匯編單元測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b.若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為A.9 B.6 C.4 D.32、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,若AC=3,AB=5,則CE的長(zhǎng)為()A. B. C. D.3、《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,記載著這樣一個(gè)問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長(zhǎng)各幾何?”大意是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?設(shè)蘆葦?shù)拈L(zhǎng)度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)24、如圖,三角形紙片ABC,點(diǎn)D是BC邊上一點(diǎn),連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點(diǎn)G,連接BE交AD于點(diǎn)F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點(diǎn)F到BC的距離為()A. B. C. D.5、如圖,在中,,,,為邊上一動(dòng)點(diǎn),于,于,為中點(diǎn),則的最小值為(

).A. B. C. D.6、以下列各組數(shù)的長(zhǎng)為邊作三角形,不能構(gòu)成直角三角形的是(

)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,157、在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.8第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,學(xué)校有一塊長(zhǎng)方形草坪,有極少數(shù)人為了避開拐角走“捷徑”,在草坪內(nèi)走出了一條“路”,他們僅僅少走了________步路(假設(shè)步為米),卻踩傷了花草.2、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為______.3、勘測(cè)隊(duì)按實(shí)際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計(jì)劃修一條從C到鐵路AB的最短公路l,并在l上建一個(gè)維修站D,使D到A,C的距離相等,則C,D間的距離為______km.4、《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有下列問題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問木長(zhǎng)幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問木桿是多長(zhǎng)?(1丈=10尺)設(shè)木桿長(zhǎng)為x尺根據(jù)題意,可列方程為______.5、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,則AC=_________米.6、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.7、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為______,的值為______.8、如圖,在的網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都為1,的頂點(diǎn)、、都在格點(diǎn)上,點(diǎn)為邊的中點(diǎn),則線段的長(zhǎng)為________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖是一個(gè)長(zhǎng)方形的大門,小強(qiáng)拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對(duì)角線的長(zhǎng).已知大門寬4尺,請(qǐng)求出竹竿的長(zhǎng).2、《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭(zhēng)蹴,終朝笑語歡嬉.良工高士素好奇,算出索長(zhǎng)有幾.”(注:1步=5尺)譯文:“有一架秋千,當(dāng)它靜止時(shí),踏板離地1尺,將它往前推送10尺(水平距離)時(shí),秋千的踏板就和人一樣高,這個(gè)人的身高為5尺,秋千的繩索始終拉得很直,問繩索有多長(zhǎng).”3、如圖,將一個(gè)長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,已知AB=4,BC=2,求折疊后重合部分的面積.4、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時(shí)施工,過點(diǎn)B作一直線m(在山的旁邊經(jīng)過),過點(diǎn)C作一直線l與m相交于D點(diǎn),經(jīng)測(cè)量,,米,米.若施工隊(duì)每天挖100米,求施工隊(duì)幾天能挖完?5、臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍上百千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力,如圖,有一臺(tái)風(fēng)中心沿東西方向由行駛向,已知點(diǎn)為海港,并且點(diǎn)與直線上的兩點(diǎn),的距離分別為,,又,以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺(tái)風(fēng)影響嗎?為什么?6、(1)圖1是由有20個(gè)邊長(zhǎng)為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個(gè)大正方形(內(nèi)部的粗實(shí)線表示分割線),請(qǐng)你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請(qǐng)你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測(cè)量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測(cè)出了下列數(shù)據(jù):①測(cè)得拉繩垂到地面后,多出的長(zhǎng)度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請(qǐng)你根據(jù)所測(cè)得的數(shù)據(jù)設(shè)計(jì)可行性方案,解決這一問題.(畫出示意圖并計(jì)算出這根旗桿的高度).7、如圖,小明家在一條東西走向的公路北側(cè)米的點(diǎn)處,小紅家位于小明家北米(米)、東米(米)點(diǎn)處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點(diǎn)處建一個(gè)快遞驛站,使最小,請(qǐng)確定點(diǎn)的位置,并求的最小值.-參考答案-一、單選題1、D【解析】【分析】由題意可知:中間小正方形的邊長(zhǎng)為:,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長(zhǎng).【詳解】解:由題意可知:中間小正方形的邊長(zhǎng)為:,每一個(gè)直角三角形的面積為:,,,或(舍去),故選:D.【考點(diǎn)】本題考查勾股定理,解題的關(guān)鍵是熟練運(yùn)用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.2、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對(duì)頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點(diǎn)F作FG⊥AB于點(diǎn)G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長(zhǎng)為.故選A.【考點(diǎn)】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是推出∠CEF=∠CFE.3、C【解析】【分析】首先設(shè)蘆葦長(zhǎng)x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長(zhǎng)x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.4、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點(diǎn)F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點(diǎn)F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點(diǎn)F到BC的距離為.故選:C【考點(diǎn)】此題考查了翻折變換,三角形的面積,勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.5、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時(shí),AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點(diǎn)就是M點(diǎn).∵當(dāng)AP的值最小時(shí),AM的值就最小,∴當(dāng)AP⊥BC時(shí),AP的值最小,即AM的值最?。逜P?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點(diǎn)】本題考查了矩形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,三角形的面積公式的運(yùn)用,垂線段最短的性質(zhì)的運(yùn)用,解題的關(guān)鍵是求出AP的最小值.6、B【解析】【分析】先求出兩小邊的平方和,再求出最長(zhǎng)邊的平方,最后看看是否相等即可.【詳解】解:A、32+42=52,故是直角三角形,不符合題意;B、42+52≠62,故不是直角三角形,符合題意;C、62+82=102,故是直角三角形,不符合題意;D、92+122=152,故是直角三角形,不符合題意;故選:B.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.7、A【解析】【分析】直接根據(jù)勾股定理求解即可.【詳解】解:∵在直角三角形中,勾為3,股為4,∴弦為,故選A.【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.二、填空題1、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據(jù)勾股定理求得AB的長(zhǎng)即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關(guān)鍵.2、29【解析】【分析】如圖(見解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解題關(guān)鍵.3、

20

13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點(diǎn)的縱坐標(biāo)相同即可求出AB的長(zhǎng)度;(2)根據(jù)A、B、C三點(diǎn)的坐標(biāo)可求出CE與AE的長(zhǎng)度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點(diǎn)的縱坐標(biāo)相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點(diǎn)C作l⊥AB于點(diǎn)E,連接AC,作AC的垂直平分線交直線l于點(diǎn)D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點(diǎn)】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點(diǎn)的坐標(biāo)求出相關(guān)線段的長(zhǎng)度,本題屬于中等題型.4、102+(x-1)2=x2【解析】【分析】當(dāng)木桿的上端與墻頭平齊時(shí),木桿與墻、地面構(gòu)成直角三角形,設(shè)木桿長(zhǎng)為x尺,則木桿底端離墻有(x-1)尺,根據(jù)勾股定理可列出方程.【詳解】解:如圖,設(shè)木桿AB長(zhǎng)為x尺,則木桿底端B離墻的距離即BC的長(zhǎng)有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點(diǎn)】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是由實(shí)際問題抽象出直角三角形,從而運(yùn)用勾股定理解題.5、【解析】【分析】首先根據(jù)BC,AC的比設(shè)出BC,AC,然后利用勾股定理列式計(jì)算求得a,即可求解.【詳解】解:∵AC∶BC=1∶7,∴設(shè)AC=a,則BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案為:10.【考點(diǎn)】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.6、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點(diǎn)】本題考查勾股定理、完全平方公式的變形求值、三角形面積計(jì)算的運(yùn)用,熟知勾股定理是解題的關(guān)鍵.7、

24

0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.8、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點(diǎn)O為AB邊的中點(diǎn),∴CO=AB=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識(shí),熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.三、解答題1、尺【解析】【分析】根據(jù)題中所給的條件可知,竹竿斜放恰好等于門的對(duì)角線長(zhǎng),可與門的寬和高構(gòu)成直角三角形,運(yùn)用勾股定理可求出門高,進(jìn)而解答即可.【詳解】解:設(shè)門高為x尺,則竹竿長(zhǎng)為(x+1)尺,根據(jù)勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,∴門高7.5尺,竹竿高=7.5+1=8.5(尺).故答案為尺.【考點(diǎn)】本題考查勾股定理的運(yùn)用,正確運(yùn)用勾股定理,將數(shù)學(xué)思想運(yùn)用到實(shí)際問題中是解題關(guān)鍵.2、尺【解析】【分析】設(shè)秋千的繩索長(zhǎng)為x尺,根據(jù)題意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可.【詳解】解:設(shè)秋千的繩索長(zhǎng)為x尺,根據(jù)題意可列方程為:x2=102+(x-4)2,解得:x=,∴秋千的繩索長(zhǎng)為尺.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AB、AC的長(zhǎng),掌握直角三角形中兩直角邊的平方和等于斜邊的平方.3、【解析】【分析】先由折疊可知EC=BC=2,進(jìn)而可知AD=CE,通過全等三角形的角角邊判定定理可證明△ADF≌△CEF,由全等可知FE=DF,設(shè)FC為x,則FE=DF=4-x,根據(jù)直角三角形的勾股定理可列方程,從而計(jì)算出CF的長(zhǎng)度,通過CF與AD的長(zhǎng)度可計(jì)算出重合部分面積.【詳解】解:∵△AEC是由△ABC沿AC折疊后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF與△CEF中,,∴△ADF≌△CEF(AAS),設(shè)FC=x,則FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折疊后重合部分的面積為.【考點(diǎn)】本題考查圖形折疊的相關(guān)性質(zhì),以及直角三角形的勾股定理的應(yīng)用,以及全等三角形的判定,找到合適的條件,選擇適合的判定方法去證明全等三角形,利用勾股定理和方程思想列方程是解決本題的關(guān)鍵.4、施工隊(duì)6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解:∵,∴,∵米,米,∴(米)故(天)答:施工隊(duì)6天能挖完.【考點(diǎn)】本題考查外角的性質(zhì),勾股定理的應(yīng)用,解題的關(guān)鍵是利用勾股定理求得∠BCD=90°.5、(1)90°;(2)受臺(tái)風(fēng)影響,理由見解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而得出∠ACB的度數(shù);(2)利用三角形面積得出CD的長(zhǎng),進(jìn)而得出海港C是否受臺(tái)風(fēng)影響.【詳解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受臺(tái)風(fēng)影響,理由:過點(diǎn)C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域,∴海港C受臺(tái)風(fēng)影響.【考點(diǎn)】本題考查的是勾股定理在實(shí)際生活中的運(yùn)用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.6、(1)見解析;(2)見解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長(zhǎng)0.5米,BC=4米,CD=0.5米,求AB的長(zhǎng);8米【解析】【分析】(1)將圖1分割成五塊:四個(gè)直角邊分別為1、2的直角三角形,一個(gè)邊長(zhǎng)為2的正方形,再在圖2中,拼成邊長(zhǎng)為的正方形即可.(2)根據(jù)20個(gè)小正方形的面積的和等于拼成的正方形的面積,根據(jù)勾股定理確定截線的長(zhǎng)度即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論