版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中考數學真題分類(勾股定理)匯編專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、我國古代數學著作《九章算術》中有這樣一個問題:
“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.水深、葭長各幾何?”.其大意是:如圖,有一個水池,水面是一個邊長為10尺(丈、尺是長度單位,1丈=10尺)的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面.水的深度與這根蘆葦的長度分別是多少?若設這跟蘆葦的長度為x尺,根據題意,所列方程正確的是(
)A.102+(x-1)2=x2 B.102+(x-1)2=(x+1)2C.52+(x-1)2=x2 D.52+(x-1)2=(x+1)22、如圖,以Rt△ABC的兩直角邊為邊向外作正方形,其面積分別為S1,S2,若S1=8cm2,S2=17cm2,則斜邊AB的長是(
)A.3cm B.6cm C.4cm D.5cm3、△ABC的三邊長a,b,c滿足+(b﹣12)2+|c﹣13|=0,則△ABC的面積是(
)A.65 B.60 C.30 D.264、已知直角三角形的兩條邊長分別是3和4,那么這個三角形的第三條邊的長為(
)A.5 B.25 C. D.5或5、如圖所示,將一根長為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設筷子露在外面的長為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤126、如圖,P是等邊三角形內的一點,且,,,以為邊在外作,連接,則以下結論中不正確的是(
)A. B. C. D.7、如圖,長方體的底面邊長分別為2cm和3cm,高為6cm.如果用一根細線從點A開始經過4個側面纏繞一圈達到點B,那么所用細線最短需要(
)A.11cm B.2cm C.(8+2)cm D.(7+3)cm第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、已知,在中,,,,則的面積為__.2、如圖,在網格中,每個小正方形的邊長均為1.點A、B,C都在格點上,若BD是△ABC的高,則BD的長為__________.3、《九章算術》是我國古代數學名著,書中有下列問題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問木長幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問木桿是多長?(1丈=10尺)設木桿長為x尺根據題意,可列方程為______.4、如圖,在正方形網格中,點A,B,C,D,E是格點,則∠ABD+∠CBE的度數為_____________.
5、如圖,圓柱形無蓋玻璃容器,高18cm,底面周長為60cm,在外側距下底1cm的點C處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長度為__________cm(容器壁厚度忽略不計).6、如圖,Rt△ABC中,∠C=90°,在△ABC外取點D,E,使AD=AB,AE=AC,且α+β=∠B,連結DE.若AB=4,AC=3,則DE=__.7、如圖,在的網格中每個小正方形的邊長都為1,的頂點、、都在格點上,點為邊的中點,則線段的長為________.8、《九章算術》中記載著這樣一個問題:已知甲、乙兩人同時從同一地點出發(fā),甲的速度為7步/分,乙的速度為3步/分,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇,那么相遇時,甲、乙各走了多遠?解:如圖,設甲乙兩人出發(fā)后x分鐘相遇.根據勾股定理可列得方程為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,煙臺市正政府決定在相距50km的A、B兩村之間的公路旁E點,修建一個大櫻桃批發(fā)市場,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大櫻桃批發(fā)市場E應建什么位置才能符合要求?2、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.3、我們知道,到線段兩端距離相等的點在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.(1)如圖1,點P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點P是△APD的準外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準外心P在△ABC的直角邊上,試求AP的長.4、如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,,,于A,于B,現要在AB上建一個中轉站E,使得C、D兩村到E站的距離相等,求E應建在距A多遠處?5、閱讀與思考:請閱讀下列材料,并完成相應的任務.若直角三角形的三邊的長都是正整數,則三邊的長為“勾股數”.構造勾股數,就是要尋找3個正整數,使它們滿足“其中兩個數的平方和(或平方差)等于第三個數的平方”.通過觀察常見勾股數“3,4,5”;“5,12,13”;“7,24,25”……猜想當一組勾股數中(),最小數為奇數時,另兩個正整數和滿足比且,解得,.任務:(1)請證明猜想成立,即證明,,構成勾股數.(2)若一組勾股數中,最小數為9,則另兩個數分別是________和________.6、如圖是三個全等的直角三角形紙片,且,按如圖的三種方法分別將其折疊,使折痕(圖中虛線)過其中的一個頂點,且使該頂點所在角的兩邊重合,記折疊后不重疊部分面積分別為.(1)若,求的值.(2)若,求①單個直角三角形紙片的面積是多少?②此時的值是多少?7、如圖,已知和中,,,,點C在線段BE上,連接DC交AE于點O.(1)DC與BE有怎樣的位置關系?證明你的結論;(2)若,,求DE的長.-參考答案-一、單選題1、C【解析】【分析】設這跟蘆葦的長度為x尺,根據勾股定理,即可求解.【詳解】解:設這跟蘆葦的長度為x尺,根據題意得:52+(x-1)2=x2故選:C【考點】本題主要考查了勾股定理的應用,明確題意,準確構造直角三角形是解題的關鍵.2、D【解析】【分析】根據正方形的面積可以得到BC2=8,AC2=17,然后根據勾股定理即可得到AB2,從而可以求得AB的值.【詳解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故選:D.【考點】本題考查正方形的面積、勾股定理,解答本題的關鍵是明確正方形的面積是邊長的平方.3、C【解析】【分析】首先根據非負數的性質可得a-5=0,b-12=0,c-13=0,進而可得a、b、c的值,再利用勾股定理逆定理證明△ABC是直角三角形,最后由直角三角形面積公式求解即可.【詳解】解:∵+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC==30.故選:C.【考點】此題主要考查了非負數的性質,以及勾股定理逆定理,熟練掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形,利用非負數性質求出a、b、c的值是解題的關鍵.4、D【解析】【分析】分情況討論:①當邊長為4的邊作斜邊時;②當邊長為4的邊作直角邊時,利用勾股定理分別求解即可.【詳解】解:當邊長為4的邊作斜邊時,第三條邊的長度為;當邊長為4的邊作直角邊時,第三條邊的長度為;綜上分析可知,這個三角形的第三條邊的長為5或,故D正確.故選:D.【考點】本題主要考查了勾股定理,掌握分類討論的思想是解題的關鍵.5、B【解析】【分析】根據題意畫出圖形,先找出h的值為最大和最小時筷子的位置,再根據勾股定理解答即可.【詳解】解:當筷子與杯底垂直時h最大,h最大=24﹣12=12cm.當筷子與杯底及杯高構成直角三角形時h最小,如圖所示:此時,AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點】本題考查了勾股定理的實際應用問題,解答此題的關鍵是根據題意畫出圖形找出何時h有最大及最小值,同時注意勾股定理的靈活運用,有一定難度.6、C【解析】【分析】根據△ABC是等邊三角形,得出∠ABC=60°,根據△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判斷A;根據勾股定理的逆定理即可判斷B;根據△BPQ是等邊三角形,△PCQ是直角三角形即可判斷D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判斷C.【詳解】解:∵△ABC是等邊三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正確,不符合題意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正確,不符合題意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等邊三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正確,不符合題意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正確,符合題意.故選:C.【考點】本題是三角形綜合題,考查了全等三角形的性質、等邊三角形的性質、勾股定理的逆定理,解決本題的關鍵是綜合應用以上知識.7、B【解析】【詳解】要求所用細線的最短距離,需將長方體的側面展開,進而根據“兩點之間線段最短”得出結果.解:將長方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..二、填空題1、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關鍵是分類討論思想.2、##【解析】【分析】根據勾股定理計算AC的長,利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點】本題考查了勾股定理,三角形的面積的計算,掌握勾股定理是解題的關鍵.3、102+(x-1)2=x2【解析】【分析】當木桿的上端與墻頭平齊時,木桿與墻、地面構成直角三角形,設木桿長為x尺,則木桿底端離墻有(x-1)尺,根據勾股定理可列出方程.【詳解】解:如圖,設木桿AB長為x尺,則木桿底端B離墻的距離即BC的長有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點】此題考查了勾股定理的應用,解題的關鍵是由實際問題抽象出直角三角形,從而運用勾股定理解題.4、45°【解析】【分析】取網格點M、N、F,連接AM、AN、BM、MF、BN,根據網格線可得到∠ABD+∠CBE=∠MAB,再根據勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網格點M、N、F,連接AM、AN、BM、MF、BN,如圖,根據網格線可知NB=1=MF,AN=3,AF=2,由網格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識,求得∠ABD+∠CBE=∠MAB是解答本題的關鍵.5、34【解析】【分析】首先展開圓柱的側面,即是矩形,接下來根據兩點之間線段最短,可知CF的長即為所求;然后結合已知條件求出DF與CD的長,再利用勾股定理進行計算即可.【詳解】如圖為圓柱形玻璃容器的側面展開圖,線段CF是蜘蛛由C到F的最短路程.根據題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長度是34cm.故答案為34.【考點】此題是有關最短路徑的問題,關鍵在于把立體圖形展開成平面圖形,找出最短路徑;6、5【解析】【分析】根據角度轉換,得到三角形ADE是直角三角形,然后運用勾股定理計算出DE的長.【詳解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考點】本題主要考查到運用勾股定理求長度,說明三角形ADE是直角三角形是解題的關鍵.7、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點O為AB邊的中點,∴CO=AB=2.5,故答案為:2.5.【考點】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關鍵.8、【解析】【分析】設甲、乙二人出發(fā)后相遇的時間為x,然后利用勾股定理列出方程即可.【詳解】解:設經x秒二人在C處相遇,這時乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考點】本題考查了勾股定理的應用,解題的關鍵是從實際問題中抽象出直角三角形.三、解答題1、大櫻桃批發(fā)市場E應建在離A站20千米的地方【解析】【分析】由勾股定理兩直角邊的平方和等于斜邊的平方分別求出和,列等式求解即可.【詳解】解:設大櫻桃批發(fā)市場E應建在離A站x千米的地方,則千米.在直角中,根據勾股定理得:,∴,在直角中,根據勾股定理得:,∴.又∵C、D兩村到E點的距離相等,∴,∴,所以,解得.∴大櫻桃批發(fā)市場E應建在離A站20千米的地方.【考點】本題考查勾股定理的實際應用,掌握兩直角邊的平方和等于斜邊的平方是解題的關鍵.2、(1)詳見解析;(2)S四邊形ABCD=56【解析】【分析】(1)由等角的余角相等可得∠DAC=∠ABE,再根據題意可得Rt△BAE≌Rt△ADC,即可證;(2)根據勾股定理算出AC,由全等可得BE=AC,再算出△ACD的面積和△ABC的面積相加即可.【詳解】解:(1)∵BE⊥AC,∴∠ABE+∠BAE=90°,∵BAD=90°,∴∠BAE+∠DAC=90°,∴∠DAC=∠ABE,又∵AB=AD,∠BEA=∠ACD,∴Rt△BAE≌Rt△ADC(AAS),∴BE=AC.(2)∵AB=AD=10,CD=6,∠ACD=90°,∴,∵Rt△BAE≌Rt△ADC,∴BE=AC=8,∴.【考點】本題考查三角形全等的判定和性質,三角形面積,關鍵在于牢記基礎知識并靈活使用.3、(1)見解析;(2)AP的長為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點P是△APD的準外心;(2)先利用勾股定理計算AC=4,再進行討論:當P點在AB上,PA=PB,當P點在AC上,PA=PC,易得對應AP的值;當P點在AC上,PB=PC,設AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時AP的長.【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點P是△APD的準外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當P點在AB上,PA=PB,則APAB;當P點在AC上,PA=PC,則APAC=2,當P點在AC上,PB=PC,如圖2,設AP=t,則PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此時AP,綜上所述,AP的長為或2或.【考點】本題考查了全等三角形的判定與性質,勾股定理及新定義的運用能力.理解題中給的定義是解題的關鍵.4、E應建在距A點15km處【解析】【分析】設,則,根據勾股定理求得和,再根據列式計算即可;【詳解】設,則,由勾股定理得:在中,,在中,,由題意可知:,所以:,解得:.所以,E應建在距A點15km處.【考點】本題主要考查了勾股定理的實際應用,準確計算是解題的關鍵.5、(1)見解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明即可.(2)利用勾股數的公式代入求值即可.(1)證明:,∴,,構成勾股數.(2)根據最小數為奇數時,另兩個正整數為,,當a=9時,,,故答案為:40,41.【考點】本題考查了勾股定理逆定理,勾股數的探索,代入求值,熟練掌握勾股數是解題的關鍵.6、(1)(2)①36;②【解析】【分析】(1)設DE=CE=x,則BE=4-x,依據S△ABE=AB×DE=BE×AC,即可得到x的值,進而得出S1的值.(2)①如圖1,依據S△ABE=AB×DE=BE×AC,即可得到DE=x,進而得出S1=x2;如圖2,依據S△ABN=AB×HN=AN×BC,即可得到EN=x,進而得出S2=x2,再根據S1+S2=13,即可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年燕京理工學院單招職業(yè)傾向性考試題庫及參考答案詳解
- 2026年浙江警官職業(yè)學院單招職業(yè)傾向性測試題庫含答案詳解
- 2026年貴州城市職業(yè)學院單招綜合素質考試題庫及參考答案詳解
- 2026年貴州電子商務職業(yè)技術學院單招職業(yè)適應性考試題庫及完整答案詳解1套
- 2026年青海省果洛藏族自治州單招職業(yè)適應性考試題庫及答案詳解一套
- 2026年廈門城市職業(yè)學院單招職業(yè)技能考試題庫及參考答案詳解一套
- 2026年福建省龍巖單招職業(yè)適應性考試題庫含答案詳解
- 2026年西安鐵路職業(yè)技術學院單招職業(yè)適應性測試題庫參考答案詳解
- 2026年山西省陽泉市單招職業(yè)傾向性考試題庫及參考答案詳解1套
- 2026年巴音郭楞職業(yè)技術學院單招綜合素質考試題庫及參考答案詳解1套
- 廣東省深圳市羅湖區(qū)2024-2025學年高一上學期1月期末物理試題(含答案)
- 《危險化學品安全法》全文學習課件
- 星羅棋布的港口課件
- 2025年下半年貴州遵義市市直事業(yè)單位選調56人考試筆試備考題庫及答案解析
- 2026年企業(yè)生產計劃制定優(yōu)化與訂單交付率提升方案
- 借用土地合同范本
- 支撐梁鋼筋自動計算表模板
- 2025天津大學管理崗位集中招聘15人筆試考試備考題庫及答案解析
- 請結合材料理論聯系實際分析如何正確評價人生價值?人生價值的實現需要哪些條件?參考答案
- 2026年黨支部主題黨日活動方案
- 幼兒園中班交通安全教育課件
評論
0/150
提交評論