難點(diǎn)詳解滬科版9年級(jí)下冊(cè)期末試卷新版附答案詳解_第1頁
難點(diǎn)詳解滬科版9年級(jí)下冊(cè)期末試卷新版附答案詳解_第2頁
難點(diǎn)詳解滬科版9年級(jí)下冊(cè)期末試卷新版附答案詳解_第3頁
難點(diǎn)詳解滬科版9年級(jí)下冊(cè)期末試卷新版附答案詳解_第4頁
難點(diǎn)詳解滬科版9年級(jí)下冊(cè)期末試卷新版附答案詳解_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、拋一枚質(zhì)地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.2、擲一枚質(zhì)地均勻的骰子,向上一面的點(diǎn)數(shù)大于2且小于5的概率是()A. B. C. D.3、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°4、下列事件是確定事件的是()A.方程有實(shí)數(shù)根 B.買一張?bào)w育彩票中大獎(jiǎng)C.拋擲一枚硬幣正面朝上 D.上海明天下雨5、下列說法錯(cuò)誤的是()A.必然事件發(fā)生的概率是1 B.不可能事件發(fā)生的概率為0C.隨機(jī)事件發(fā)生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能發(fā)生6、下列語句判斷正確的是()A.等邊三角形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形B.等邊三角形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形C.等邊三角形是中心對(duì)稱圖形,但不是軸對(duì)稱圖形D.等邊三角形既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形7、下列判斷正確的是()A.明天太陽從東方升起是隨機(jī)事件;B.購(gòu)買一張彩票中獎(jiǎng)是必然事件;C.?dāng)S一枚骰子,向上一面的點(diǎn)數(shù)是6是不可能事件;D.任意畫一個(gè)三角形,其內(nèi)角和是360°是不可能事件;8、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點(diǎn)C為優(yōu)弧上的一個(gè)動(dòng)點(diǎn),則面積的最大值是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、過年時(shí)包了100個(gè)餃子,其中有10個(gè)餃子包有幸運(yùn)果,任意挑選一個(gè)餃子,正好是包有幸運(yùn)果餃子的概率是_____.2、《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書中有這樣的一個(gè)問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長(zhǎng)為8步,股(長(zhǎng)直角邊)長(zhǎng)為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.3、如圖,PA,PB是的切線,切點(diǎn)分別為A,B.若,,則AB的長(zhǎng)為______.4、如圖AB為⊙O的直徑,點(diǎn)P為AB延長(zhǎng)線上的點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過A、B兩點(diǎn)分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號(hào))①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長(zhǎng)為;④若AC=3BD,則有tan∠MAP=.5、如圖,與x軸交于、兩點(diǎn),,點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),PD切于點(diǎn)D,則△ABD的面積的最大值是________;線段PD的最小值是________.6、如圖,把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)某個(gè)角度α得到,∠A=30°,∠1=70°,則旋轉(zhuǎn)角α的度數(shù)為_____.7、如圖,是由繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,若點(diǎn)D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖1,點(diǎn)O為直線AB上一點(diǎn),將兩個(gè)含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得邊OP在的內(nèi)部且平分,此時(shí)三角板OPQ旋轉(zhuǎn)的角度為______度;(2)三角板OPQ在繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)時(shí),若OP在的內(nèi)部.試探究與之間滿足什么等量關(guān)系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點(diǎn)O以每秒2°的速度按順時(shí)針方向旋轉(zhuǎn),同時(shí)將三角板OPQ繞點(diǎn)O以每秒3°的速度按逆時(shí)針方向旋轉(zhuǎn),將射線OB繞點(diǎn)O以每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)后的射線OB記為OE,射線OC平分,射線OD平分,當(dāng)射線OC、OD重合時(shí),射線OE改為繞點(diǎn)O以原速按順時(shí)針方向旋轉(zhuǎn),在OC與OD第二次相遇前,當(dāng)時(shí),直接寫出旋轉(zhuǎn)時(shí)間t的值.2、從2021年開始,重慶市新高考采用“”模式:“3”指全國(guó)統(tǒng)考科目,即:語文、數(shù)學(xué)、外語三個(gè)學(xué)科為必選科目;“1”為首選科目,即:物理、歷史這2個(gè)學(xué)科中任選1科,且必須選1科;“2”為再選科目,即:化學(xué)、生物、思想政治、地理這4個(gè)學(xué)科中任選2科,且必須選2科.小紅在高一上期期末結(jié)束后,需要選擇高考科目.(1)小紅在“首選科目”中,選擇歷史學(xué)科的概率是___________.(2)用列表法或畫樹狀圖法,求小紅在“再選科目”中選擇思想政治和地理這兩門學(xué)科的概率.3、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長(zhǎng);(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.4、在同樣的條件下對(duì)某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計(jì)發(fā)芽種子數(shù),獲得如下頻數(shù)表.實(shí)驗(yàn)種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計(jì)該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計(jì)約需麥種多少千克(精確到1kg)?5、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E在AC上,以AE為直徑的⊙O經(jīng)過點(diǎn)D.(1)求證:①BC是⊙O的切線;②;(2)若點(diǎn)F是劣弧AD的中點(diǎn),且CE=3,試求陰影部分的面積.6、如圖,在中,,,D是邊BC上一點(diǎn),作射線AD,滿足,在射線AD取一點(diǎn)E,且.將線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長(zhǎng)交BE于點(diǎn)G.(1)依題意補(bǔ)全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關(guān)系,并證明.7、如圖,在方格紙中,已知頂點(diǎn)在格點(diǎn)處的△ABC,請(qǐng)畫出將△ABC繞點(diǎn)C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫出△A'B'C'各頂點(diǎn)的坐標(biāo)).-參考答案-一、單選題1、B【分析】根據(jù)隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,可以分別假設(shè)出三次情況,畫出樹狀圖即可.【詳解】解:隨機(jī)擲一枚質(zhì)地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點(diǎn)睛】本題主要考查了樹狀圖法求概率,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.2、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點(diǎn)數(shù)可能是3或4,利用概率公式計(jì)算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個(gè)面,點(diǎn)數(shù)分別為1,2,3,4,5,6,∴點(diǎn)數(shù)大于2且小于5的有3或4,∴向上一面的點(diǎn)數(shù)大于2且小于5的概率是=,故選:C.【點(diǎn)睛】此題考查了求簡(jiǎn)單事件的概率,正確掌握概率的計(jì)算公式是解題的關(guān)鍵.3、B【分析】由同弧所對(duì)的圓周角是圓心角的一半可得,利用平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點(diǎn)睛】題目主要考查圓周角定理,平行線的性質(zhì)等,理解題意,找出相關(guān)的角度是解題關(guān)鍵.4、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類對(duì)各個(gè)選項(xiàng)逐個(gè)分析,即可得到答案【詳解】解:.方程無實(shí)數(shù)根,因此“方程有實(shí)數(shù)”是不可能事件,所以選項(xiàng)符合題意;B.買一張?bào)w育彩票可能中大獎(jiǎng),有可能不中,因此是隨機(jī)事件,所以選項(xiàng)B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項(xiàng)C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項(xiàng)D不符合題意;故選:.【點(diǎn)睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.5、D【分析】根據(jù)概率的意義分別判斷后即可確定正確的選項(xiàng).【詳解】解:A.必然事件發(fā)生的概率是1,故該選項(xiàng)正確,不符合題意;B.不可能事件發(fā)生的概率是0,故該選項(xiàng)正確,不符合題意;C.隨機(jī)事件發(fā)生的可能性越大,它的概率就越接近1,故該選項(xiàng)正確,不符合題意;D.概率很小的事件也可能發(fā)生,故該選項(xiàng)不正確,符合題意;故選D【點(diǎn)睛】本題考查概率的意義,理解概率的意義反映的只是這一事件發(fā)生的可能性的大?。罕厝话l(fā)生的事件發(fā)生的概率為1,隨機(jī)事件發(fā)生的概率大于0且小于1,不可能事件發(fā)生的概率為0.6、A【分析】根據(jù)等邊三角形的對(duì)稱性判斷即可.【詳解】∵等邊三角形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,∴B,C,D都不符合題意;故選:A.【點(diǎn)睛】本題考查了等邊三角形的對(duì)稱性,熟練掌握等邊三角形的對(duì)稱性是解題的關(guān)鍵.7、D【詳解】解:A、明天太陽從東方升起是必然事件,故本選項(xiàng)錯(cuò)誤,不符合題意;B、購(gòu)買一張彩票中獎(jiǎng)是隨機(jī)事件,故本選項(xiàng)錯(cuò)誤,不符合題意;C、擲一枚骰子,向上一面的點(diǎn)數(shù)是6是隨機(jī)事件,故本選項(xiàng)錯(cuò)誤,不符合題意;D、任意畫一個(gè)三角形,其內(nèi)角和是360°是不可能事件,故本選項(xiàng)正確,符合題意;故選:D【點(diǎn)睛】本題考查的是對(duì)必然事件的概念的理解,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關(guān)鍵.8、C【分析】如圖,過點(diǎn)C作CT⊥AB于點(diǎn)T,過點(diǎn)O作OH⊥AB于點(diǎn)H,交⊙O于點(diǎn)K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結(jié)論.【詳解】解:如圖,過點(diǎn)C作CT⊥AB于點(diǎn)T,過點(diǎn)O作OH⊥AB于點(diǎn)H,交⊙O于點(diǎn)K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點(diǎn)睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識(shí),解題的關(guān)鍵是求出CT的最大值,屬于中考??碱}型.二、填空題1、【分析】直接利用概率公式進(jìn)行計(jì)算即可.【詳解】解:過年時(shí)包了100個(gè)餃子,有10個(gè)餃子包有幸運(yùn)果,任意挑選一個(gè)餃子,正好是包有幸運(yùn)果餃子的概率是故答案為:【點(diǎn)睛】本題考查的是簡(jiǎn)單隨機(jī)事件的概率,熟練的利用概率公式進(jìn)行計(jì)算是解本題的關(guān)鍵;概率的含義:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.2、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設(shè)直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長(zhǎng)為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點(diǎn)睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點(diǎn)在理解題意和利用內(nèi)切圓半徑求解面積;3、3【分析】由切線長(zhǎng)定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點(diǎn)睛】本題考查了等邊三角形的判定和切線長(zhǎng)定理,解題的關(guān)鍵是作出相應(yīng)輔助線.4、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對(duì)等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②;求出,利用弧長(zhǎng)公式求得的長(zhǎng)可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長(zhǎng),可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長(zhǎng)為,故③錯(cuò)誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.5、【分析】根據(jù)題中點(diǎn)的坐標(biāo)可得圓的直徑,半徑為1,分析以AB定長(zhǎng)為底,點(diǎn)D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點(diǎn),根據(jù)切線的性質(zhì)及勾股定理可得,由其非負(fù)性即可得.【詳解】解:如圖所示:當(dāng)點(diǎn)P到如圖位置時(shí),的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長(zhǎng)為底,點(diǎn)D在圓上,高最大為圓的半徑,如圖所示:此時(shí)面積的最大值為:;如圖所示:連接AP,∵PD切于點(diǎn)D,∴,∴,設(shè)點(diǎn),在中,,,∴,在中,,∴,則,當(dāng)時(shí),PD取得最小值,最小值為,故答案為:①;②.【點(diǎn)睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.6、##【分析】由旋轉(zhuǎn)的性質(zhì)可得再利用三角形的外角的性質(zhì)求解從而可得答案.【詳解】解:把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)某個(gè)角度α得到,∠A=30°,∠1=70°,故答案為:【點(diǎn)睛】本題考查的是旋轉(zhuǎn)的性質(zhì),三角形的外角的性質(zhì),利用性質(zhì)的性質(zhì)求解是解本題的關(guān)鍵.7、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.三、解答題1、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據(jù)OP平分得到∠PON,然后求出∠BOP即可;(2)先根據(jù)題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉(zhuǎn)前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時(shí)間,再設(shè)在OC與OD第二次相遇前,當(dāng)時(shí),需要旋轉(zhuǎn)時(shí)間為t,再分OE在OC的左側(cè)和OE在OC的右側(cè)兩種情況解答即可.(1)解:∵OP平分∠MON∴∠PON=∠MON=45°∴三角板OPQ旋轉(zhuǎn)的角:∠BOP=∠PON+∠NOB=135°.故答案是135°(2)解:∠MOP-∠NOQ=30°,理由如下:∵∠MON=90°,∠POQ=60°∴∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,∴∠MOP-∠NOQ=90°-∠POQ-(60°-∠POQ)=30°.(3)解:∵射線OC平分,射線OD平分∴∠NOC=45°,∠POD=30°∴選擇前OC與OD的夾角為∠COD=∠NOC+∠NOP+∠POD=165°∴OC與OD第一次相遇的時(shí)間為165°÷(2°+3°)=33秒,此時(shí)OB旋轉(zhuǎn)的角度為33×5°=165°∴此時(shí)OC與OE的夾角165-(180-45-2×33)=96°OC與OD第二次相遇需要時(shí)間360°÷(3°+2°)=72秒設(shè)在OC與OD第二次相遇前,當(dāng)時(shí),需要旋轉(zhuǎn)時(shí)間為t①當(dāng)OE在OC的左側(cè)時(shí),有(5°-2°)t=96°-13°,解得:t=s②當(dāng)OE在OC的右側(cè)時(shí),有(5°-2°)t=96°+13°,解得:t=s然后,①②都是每隔360÷(5°-2°)=120秒,出現(xiàn)一次這種現(xiàn)象∵C、D第二次相遇需要時(shí)間72秒∴在OC與OD第二次相遇前,當(dāng)時(shí),、旋轉(zhuǎn)時(shí)間t的值為s或s.【點(diǎn)睛】本題主要考查了角平分線的定義、平角的定義、一元一次方程的應(yīng)用等知識(shí)點(diǎn),靈活運(yùn)用相關(guān)知識(shí)成為解答本題的關(guān)鍵.2、(1)(2)【分析】(1)根據(jù)概率的公式計(jì)算可得答案;(2)畫樹狀圖,共有12個(gè)等可能的結(jié)果,該同學(xué)恰好選中思想政治和地理化兩科的結(jié)果有2個(gè),再由概率公式求解即可.(1)解:選擇物理、歷史共有2中等可能結(jié)果,選擇歷史學(xué)科的結(jié)果有1種,所以選擇歷史學(xué)科的概率是;(2)假設(shè)A表示化學(xué)、B表示生物、C表示思想政治、D表示地理,畫樹狀圖如下圖:共有12個(gè)等可能的結(jié)果,該同學(xué)恰好選中思想政治和地理的結(jié)果有2個(gè),所以該同學(xué)恰好選中思想政治和地理的概率為.【點(diǎn)睛】此題考查了概率的求法,利用如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,還考查了用列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,做題的關(guān)鍵是掌握概率的求法.3、(1);(2)證明見詳解;(3).【分析】(1)過點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+FC′≥BC′,∴點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點(diǎn)睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點(diǎn)共圓,同弧所對(duì)圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問題,角平分線性質(zhì),分類討論思想,本題難度大,應(yīng)用知識(shí)多,是中考?jí)狠S題,利用輔助線作出正確圖形是解題關(guān)鍵.4、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計(jì)麥種的發(fā)芽率,大數(shù)次實(shí)驗(yàn),當(dāng)頻率固定到一個(gè)穩(wěn)定值時(shí),可根據(jù)頻率公式=頻數(shù)÷總數(shù)計(jì)算即可;(2)設(shè)約需麥種x千克,根據(jù)x千克

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論