版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數學上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、從-3,0,1,2這四個數中任取一個數作為一元二次方程的系數的值,能使該方程有實數根的概率是(
)A. B. C. D.2、若菱形兩條對角線的長度是方程的兩根,則該菱形的邊長為(
)A. B.4 C. D.53、揚帆中學有一塊長,寬的矩形空地,計劃在這塊空地上劃出四分之一的區(qū)域種花,小禹同學設計方案如圖所示,求花帶的寬度.設花帶的寬度為,則可列方程為()A. B.C. D.4、如圖,在四邊形ABCD中,,且AD=DC,則下列說法:①四邊形ABCD是平行四邊形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,則四邊形ABCD的面積為24,其中正確的有(
)A.2個 B.3個 C.4個 D.5個5、如圖,在菱形ABCD中,,,過菱形ABCD的對稱中心O分別作邊AB,BC的垂線,交各邊于點E,F(xiàn),G,H,則四邊形EFGH的周長為(
)A. B. C. D.6、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結論有(
)A.1個 B.2個 C.3個 D.4個7、小穎有兩頂帽子,分別為紅色和黑色,有三條圍巾,分別為紅色、黑色和白色,她隨機拿出一頂帽子和一條圍巾戴上,恰好為紅色帽子和紅色圍巾的概率是(
)A. B. C. D.二、多選題(3小題,每小題2分,共計6分)1、(多選)若數使關于的一元二次方程有兩個不相等的實數解,且使關于的分式方程的解為非負整數,則滿足條件的的值為(
)A.1 B.3 C.5 D.72、下列各數不是方程解的是(
)A.6 B.2 C.4 D.03、如圖,將ABC沿射線BC向右平移到DCE,連接AD,BD.添加下列條件,能判斷四邊形ABCD是菱形的有(
)A.AC=BDB.AB=ADC.AC⊥BDD.ABC為等邊三角形第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、你知道嗎,對于一元二次方程,我國古代數學家還研究過其幾何解法呢!以方程即為例加以說明.數學家趙爽(公元3~4世紀)在其所著的《勾股圓方圖注》中記載的方法是:構造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據此易得.那么在下面右邊三個構圖(矩形的頂點均落在邊長為1的小正方形網格格點上)中,能夠說明方程的正確構圖是_____.(只填序號)2、若正方形的對角線的長為4,則該正方形的面積為_________.3、若關于x的一元二次方程x2+mx+2n=0有一個根是2,則m+n=_____.4、為增強學生身體素質,提高學生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽,根據題意,可列方程為_____.5、如圖,在長方形中,,在上存在一點、沿直線把折疊,使點恰好落在邊上的點處,若,那么的長為________.6、一元二次方程的解為__________.7、已知關于x的一元二次方程的一個根比另一個根大2,則m的值為_____.8、如圖,四邊形、是正方形,點、分別在、上,連接,過點作,交于點,若,,則________.9、如圖,在平面直角坐標系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點E,交AC于點D.若y軸上有一點P(不與點C重合),能使△AEP是以為AE為腰的等腰三角形,則點P的坐標為____.10、有一架豎直靠在直角墻面的梯子正在下滑,一只貓緊緊盯住位于梯子正中間的老鼠,等待與老鼠距離最小時撲捉.把墻面、梯子、貓和老鼠都理想化為同一平面內的線或點,模型如圖,,點,分別在射線,上,長度始終保持不變,,為的中點,點到,的距離分別為4和2.在此滑動過程中,貓與老鼠的距離的最小值為_________.四、解答題(6小題,每小題10分,共計60分)1、已知關于x的方程x2+(m﹣2)x﹣2m=0.(1)求證:不論m取何值,此方程總有實數根;(2)若m為整數,且方程的一個根小于2,請寫出一個滿足條件的m的值.2、如圖,在四邊形中,,分別是,的中點,,分別是對角線,的中點,依次連接,,,,連接,.(1)求證:四邊形是平行四邊形;(2)當時,與有怎樣的位置關系?請說明理由;3、如圖,在四邊形ABCD中,AD∥BC,對角線BD的垂直平分線與邊AD,BC分別相交于點M,N.(1)求證:四邊形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周長.4、如圖,四邊形ABCD是正方形,點E在BC延長線上,DF⊥AE于點F,點G在AE上,且∠ABG=∠E.求證:AG=DF.5、如圖,在矩形中,對角線與相交于點E,過點A作,過點B作,兩線相交于點F.(1)求證:四邊形是菱形;(2)連接,若,求證:.6、關于x的一元二次方程kx2+(k+1)x+=0.(1)當k取何值時,方程有兩個不相等的實數根?(2)若其根的判別式的值為3,求k的值及該方程的根.-參考答案-一、單選題1、B【解析】【分析】根據一元二次方程根的判別式的意義得到△=32+4a≥0且,解得a≥且,然后根據概率公式求解.【詳解】解:當△=32+4a≥0且時,一元二次方程有實數根,所以a≥且,從-3,0,1,2這4個數中任取一個數,滿足條件的結果數有,所以所得的一元二次方程中有實數根的概率是.故選:.【考點】正確理解列舉法求概率的條件以及一元二次方程根的判定方法是解決問題的關鍵.用到的知識點為:概率=所求情況數與總情況數之比.2、A【解析】【分析】先求出方程的解,即可得出AC=4,BD=2,根據菱形的性質求出AO和OD,根據勾股定理求出AD即可.【詳解】解:解方程x2?6x+8=0得:x=4或2,即AC=4,BD=2,∵四邊形ABCD是菱形,∴∠AOD=90°,AO=OC=2,BO=DO=1,由勾股定理得:AD==,故選:A.【考點】本題考查了解一元二次方程和菱形的性質,能求出方程的解是解此題的關鍵.3、D【解析】【分析】根據空白區(qū)域的面積矩形空地的面積可得.【詳解】設花帶的寬度為,則可列方程為,故選D.【考點】本題主要考查由實際問題抽象出一元二次方程,解題的關鍵是根據圖形得出面積的相等關系.4、D【解析】【分析】由,可知四邊形ABCD是平行四邊形,可判斷①的正誤;由AD=DC,可知平行四邊形ABCD是菱形,根據菱形的性質可判斷②③④⑤的正誤.【詳解】解:∵,∴四邊形ABCD是平行四邊形,故①正確;∵AD=DC,∴平行四邊形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正確;∵AC=6,BD=8,∴菱形ABCD的面積=,故⑤正確;∴正確的個數有5個,故選D.【考點】本題考查了平行四邊形的判定,菱形的判定與性質.解題的關鍵在于證明四邊形ABCD是菱形.5、A【解析】【分析】依次求出OE=OF=OG=OH,利用勾股定理得出EF和OE的長,即可求出該四邊形的周長.【詳解】∵HF⊥BC,EG⊥AB,∴∠BEO=∠BFO=90°,∵∠A=120°,∴∠B=60°,∴∠EOF=120°,∠EOH=60°,由菱形的對邊平行,得HF⊥AD,EG⊥CD,因為O點是菱形ABCD的對稱中心,∴O點到各邊的距離相等,即OE=OF=OG=OH,∴∠OEF=∠OFE=30°,∠OEH=∠OHE=60°,∴∠HEF=∠EFG=∠FGH=∠EHG=90°,所以四邊形EFGH是矩形;設OE=OF=OG=OH=x,∴EG=HF=2x,,如圖,連接AC,則AC經過點O,可得三角形ABC是等邊三角形,∴∠BAC=60°,AC=AB=2,∴OA=1,∠AOE=30°,∴AE=,∴x=OE=∴四邊形EFGH的周長為EF+FG+GH+HE=,故選A.【考點】本題考查了菱形的性質、矩形的判定與性質、等邊三角形的判定與性質、勾股定理、直角三角形的性質等內容,要求學生在理解相關概念的基礎上學會應用,能分析并綜合運用相關條件完成線段關系的轉換,考查了學生的綜合分析與應用的能力.6、D【解析】【分析】①根據角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據等腰直角三角形的性質可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據全等三角形對應邊相等可得BE=DH,再根據等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據全等三角形對應邊相等可得BH=HF,判斷出③正確;④根據全等三角形對應邊相等可得DF=HE,然后根據HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質,全等三角形的判定與性質,角平分線的定義,等腰三角形的判定與性質,熟記各性質并仔細分析題目條件,根據相等的度數求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關鍵,也是本題的難點.7、C【解析】【分析】利用列表法或樹狀圖即可解決.【詳解】分別用r、b代表紅色帽子、黑色帽子,用R、B、W分別代表紅色圍巾、黑色圍巾、白色圍巾,列表如下:RBWrrRrBrWbbRbBbW則所有可能的結果數為6種,其中恰好為紅色帽子和紅色圍巾的結果數為1種,根據概率公式,恰好為紅色帽子和紅色圍巾的概率是.故選:C.【考點】本題考查了簡單事件的概率,常用列表法或畫樹狀圖來求解.二、多選題1、AC【解析】【分析】根據一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負整數分別求出a的取值范圍,即可得答案.【詳解】∵關于的一元二次方程有兩個不相等的實數解,∴,解得:,∵,∴,解得:,∵關于的分式方程的解為非負整數,∴且,解得:且,∴且a≠3,∵是整數,∴a=1或5,故選:AC.【考點】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關鍵,注意分式的分母不為0的隱含條件,避免漏解.2、ACD【解析】【分析】分別把四個選項中的數代入方程,看方程兩邊是否相等即可求解.【詳解】解:A、將6代入得:,故6不是方程解,符合題意;B、將2代入得:,故2是方程解,不符合題意;C、將4代入得:,故4不是方程解,符合題意;D、將0代入得:,故0不是方程解,符合題意;故選:ACD.【考點】此題考查了一元二次方程解得含義,解題的關鍵是熟練掌握一元二次方程解得含義.3、BCD【解析】【分析】根據將沿射線向右平移到,推出四邊形是平行四邊形,再根據菱形的判定定理對每個選項進行判定即可.【詳解】解:∵將沿射線向右平移到∴,∴四邊形是平行四邊形當時,根據對角線相等的平行四邊形是矩形,可得四邊形是矩形,故A選項不符合題意;當時,根據有一組鄰邊相等的平行四邊形是菱形,可得四邊形是菱形,故B選項符合題意;當時,根據對角線互相垂直的平行四邊形是菱形,可得四邊形是菱形,故C選項符合題意;當是等邊三角形時,,根據有一組鄰邊相等的平行四邊形是菱形,可得四邊形是菱形,故D選項符合題意;故選:BCD.【考點】本題考查了平移、平行四邊形的判定、菱形的判定、等邊三角形的性質等知識點,熟練掌握菱形的判定定理是解答本題的關鍵.三、填空題1、②【解析】【分析】仿造案例,構造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據此易得.故答案為②.【考點】本題考查了一元二次方程的應用,仿造案例,構造出合適的大正方形是解題的關鍵.2、8【解析】【分析】根據正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質,熟練掌握正方形的面積的兩種求法是解題的關鍵.3、﹣2【解析】【分析】根據一元二次方程的解的定義把x=2代入得到得然后利用整體代入的方法進行計算.【詳解】∵2是關于x的一元二次方程的一個根,∴,∴n+m=?2,故答案為?2.【考點】本題考查了一元二次方程的解,掌握方程的解的定義是解決本題的關鍵.4、x(x﹣1)=21【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=21,故答案為x(x﹣1)=21.【考點】本題考查了一元二次方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.5、【解析】【分析】由折疊的性質,得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質,,∵,又,在中,;故答案為:.【考點】本題考查了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,勾股定理求解.6、x=或x=2【解析】【分析】根據一元二次方程的解法解出答案即可.【詳解】當x-2=0時,x=2,當x-2≠0時,4x=1,x=,故答案為:x=或x=2.【考點】本題考查解一元二次方程,本題關鍵在于分情況討論.7、1【解析】【分析】利用因式分解法求出x1,x2,再根據根的關系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關鍵是熟知因式分解法的運用.8、【解析】【分析】求出BE的長,再根據兩組對邊分別平行的四邊形是平行四邊形求出四邊形EFCH是平行四邊形,根據平行四邊形的對邊相等可得EF=CH,再根據正方形的性質可得AB=BC,AE=EF,然后求出BH=BE即可得解.【詳解】∵AB=4,AE=1,∴BE=AB?AE=4?1=3,∵四邊形ABCD,AEFG都是正方形,∴AD∥EF∥BC,又∵EH∥FC,∴四邊形EFCH平行四邊形,∴EF=CH,∵四邊形ABCD,AEFG都是正方形,∴AB=BC,AE=EF,∴AB?AE=BC?CH,∴BE=BH=3.故答案為3.【考點】本題主要考查正方形和平行四邊形,掌握正方形與平行四邊形的判定與性質是解題的關鍵.9、,或【解析】【分析】設AE=m,根據勾股定理求出m的值,得到點E(1,),設點P坐標為(0,y),根據勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設點P坐標為(0,y),∵△AEP是以為AE為腰的等腰三角形,當AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點P的坐標為,,,故答案是:,,.【考點】本題主要考查等腰三角形的定義,勾股定理,矩形的性質,垂直平分線的性質,掌握勾股定理,列出方程,是解題的關鍵.10、【解析】【分析】根據當、、三點共線,距離最小,求出BE和BD即可得出答案.【詳解】如圖當、、三點共線,距離最小,∵,為的中點,∴,,,故答案為:.【考點】本題考查了直角三角形斜邊的中線等于斜邊的一半,勾股定理,兩點間的距離線段最短,判斷出距離最短的情況是解題關鍵.四、解答題1、(1)證明見解析(2)﹣1(答案不唯一)【解析】【分析】(1)由題意知,判斷其與0的關系,即可得出結論;(2)表示出方程的兩根,根據要求進行求解即可.(1)證明:由題意知∵(m+2)2≥0,∴△≥0,∴關于x的方程x2+(m﹣2)x﹣2m=0總有實數根;(2)解:由(1)知,△=(m+2)2,∴x,∴,,∵方程有一根小于2,∴﹣m<2,∴m>﹣2,∵m為整數,∴滿足條件的m的一個值為﹣1.【考點】本題考查了一元二次方程的根.解題的關鍵在于利用判根公式確定方程根的個數,利用公式求方程的根.2、(1)見解析;(2)當AB=CD時,EF⊥GH,理由見解析【解析】【分析】(1)利用三角形的中位線定理可以證得四邊形EGFH的一組對邊平行且相等,即可證得;(2)根據菱形的判定和性質定理即可得到結論.【詳解】解:(1)證明:∵四邊形ABCD中,E、F、G、H分別是AD、BC、BD、AC的中點,∴FG=CD,F(xiàn)G∥CD.HE=CD,HE∥CD.∴FG=EH,F(xiàn)G∥EH,∴四邊形EGFH是平行四邊形;(2)解:當AB=CD時,EF⊥GH,理由:由(1)知四邊形EGFH是平行四邊形,當AB=CD時,EH=CD,EG=AB,∴EG=EH,∴四邊形EGFH是菱形,∴EF⊥GH.【考點】本題考查的是三角形中位線定理的應用,平行四邊形和菱形的判定,掌握三角形的中位線平行于第三邊且等于第三邊的一半和菱形的對角線互相垂直是解題的關鍵.3、(1)見解析(2)菱形BNDM的周長為52【解析】【分析】(1)證△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,證出四邊形BNDM是平行四邊形,進而得出結論;(2)由菱形的性質得出BM=BN=DM=DN,OB=BD=12,OM=MN=2,由勾股定理得BM的長,即可得出答案.(1)證明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是對角線BD的垂直平分線,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學學生社團活動風險管理制度
- 人力資源管理與發(fā)展制度
- 企業(yè)調休制度
- 2026年物流管理專業(yè)模擬試題及答案詳解
- 2026年歷史事件解析歷史人物研究考試題集
- 2026年網絡工程師網絡配置試題網絡故障排查與優(yōu)化題
- 2026年現(xiàn)代企業(yè)管理知識評估試題庫
- 2026年建筑工程設計與施工專業(yè)題庫資源
- 2025年企業(yè)產品水足跡核算軟件采購合同
- 急診骨折患者的固定急救處理流程及制度
- 泰康入職測評題庫及答案
- 天津市河東區(qū)2026屆高一上數學期末考試試題含解析
- DB37-T6005-2026人為水土流失風險分級評價技術規(guī)范
- 彈性工作制度規(guī)范
- 仁愛科普版(2024)八年級上冊英語Unit1~Unit6補全對話練習題(含答案)
- 腎寶膠囊產品課件
- YST 581.1-2024《氟化鋁化學分析方法和物理性能測定方法 第1部分:濕存水含量和灼減量的測定 重量法》
- 小學五年級數學上冊寒假作業(yè)天天練30套試題(可打印)
- 金蟬環(huán)保型黃金選礦劑使用說明
- 常見中草藥別名大全
- YY/T 0884-2013適用于輻射滅菌的醫(yī)療保健產品的材料評價
評論
0/150
提交評論