難點解析重慶市彭水一中7年級數(shù)學下冊第四章三角形同步訓練試卷(詳解版)_第1頁
難點解析重慶市彭水一中7年級數(shù)學下冊第四章三角形同步訓練試卷(詳解版)_第2頁
難點解析重慶市彭水一中7年級數(shù)學下冊第四章三角形同步訓練試卷(詳解版)_第3頁
難點解析重慶市彭水一中7年級數(shù)學下冊第四章三角形同步訓練試卷(詳解版)_第4頁
難點解析重慶市彭水一中7年級數(shù)學下冊第四章三角形同步訓練試卷(詳解版)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市彭水一中7年級數(shù)學下冊第四章三角形同步訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、以長為15cm,12cm,8cm、5cm的四條線段中的三條線段為邊,可以畫出三角形的個數(shù)是()A.1個 B.2個 C.3個 D.4個2、下列三角形與下圖全等的三角形是()A. B.C. D.3、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°4、以下列各組線段為邊,能組成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm5、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點D,則ADC的面積是()A.8 B.10 C.9 D.166、如圖,ABC≌DEF,點B、E、C、F在同一直線上,若BC=7,EC=4,則CF的長是()A.2 B.3 C.4 D.77、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,8、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE9、如圖,點A在DE上,點F在AB上,△ABC≌△EDC,若∠ACE=50°,則∠DAB=()A.40° B.45° C.50° D.55°10、三角形的外角和是()A.60° B.90° C.180° D.360°第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,某同學把一塊三角形的玻璃打碎成了三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃,那么最省事的辦法是帶____(填序號)去配,這樣做的科學依據(jù)是_______.2、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.3、如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點A1,設∠A=.則∠A1=_______(用含的式子表示).4、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當△PEC與△QFC全等時,CQ的長為______.5、如圖,AB=DE,AC=DF,BF=CE,點B、F、C、E在一條直線上,AB=4,EF=6,求△ABC中AC邊的取值范圍.6、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D,己知DE=4,AD=6,則BE的長為___.7、已知,如圖,AB=AC,AD=AE,BE與CD相交于點P,則下列結論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對全等三角形;正確的是_____(請?zhí)顚懶蛱枺?、我們將一副三角尺按如圖所示的位置擺放,則_______°.9、如圖,在中,,一條線段,P,Q兩點分別在線段和的垂線上移動,若以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,則的長為_________.10、已知a,b,c是的三條邊長,化簡的結果為_______.三、解答題(6小題,每小題10分,共計60分)1、已知,∠A=∠D,BC平分∠ABD,求證:AC=DC.2、如圖,點B,F(xiàn),C,E在一條直線上,AB=DE,∠B=∠E,BF=CE.求證:AC=DF.3、人教版初中數(shù)學教科書八年級上冊第36、37頁告訴我們作一個角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作圖:(1)以O為圓心,任意長為半徑畫弧,分別交OA、OB于點C、D;(2)畫一條射線O′A′,以點O′為圓心,OC長為半徑畫弧,交O′A′于點C′;(3)以點C′為圓心,CD長為半徑畫弧,與第2步中所畫的弧相交于點D′;(4)過點D′畫射線O′B′,則∠A′O′B′=∠AOB.請你根據(jù)以上材料完成下列問題:(1)完成下面證明過程(將正確答案寫在相應的橫線上).證明:由作圖可知,在△O′C′D′和△OCD中,,∴△O′C′D′≌,∴∠A′O′B'=∠AOB.(2)這種作一個角等于已知角的方法依據(jù)是.(填序號)①AAS;②ASA;③SSS;④SAS4、如圖,在中,,,點D是內一點,連接CD,過點C作且,連接AD,BE.求證:.5、如圖,AB是⊙O的直徑,CD是⊙O中任意一條弦,求證:AB≥CD.6、某中學八年級學生進行課外實踐活動,要測池塘兩端A,B的距離,因無法直接測量,經(jīng)小組討論決定,先在地上取一個可以直接到達A,B兩點的點O,連接AO并延長到點C,使AO=CO;連接BO并延長到點D,使BO=DO,連接CD并測出它的長度.(1)根據(jù)題中描述,畫出圖形;(2)CD的長度就是A,B兩點之間的距離,請說明理由.-參考答案-一、單選題1、C【分析】從4條線段里任取3條線段組合,可有4種情況,看哪種情況不符合三角形三邊關系,舍去即可.【詳解】解:首先可以組合為15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根據(jù)三角形的三邊關系,發(fā)現(xiàn)其中的12cm,8cm、5cm不符合,則可以畫出的三角形有3個.故選:C.【點睛】本題考查了三角形的三邊關系:即任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.這里一定要首先把所有的情況組合后,再看是否符合三角形的三邊關系.2、C【分析】根據(jù)已知的三角形求第三個內角的度數(shù),由全等三角形的判定定理即可得出答案.【詳解】由題可知,第三個內角的度數(shù)為,A.只有兩邊,故不能判斷三角形全等,故此選項錯誤;B.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項錯誤;C.兩邊相等且夾角相等,故能判斷兩三角形全等,故此選項正確;D.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項錯誤.故選:C.【點睛】本題考查全等三角形的判定,掌握全等三角形的判定定理是解題的關鍵.3、D【分析】設交于點,過點作,根據(jù)平行線的性質可得,根據(jù)三角形的外角性質可得,進而即可求得【詳解】解:設交于點,過點作,如圖,∵∴∠E+∠F=85°故選D【點睛】本題考查了平行線的性質,三角形的外角性質,平角的定義,掌握三角形的外角性質是解題的關鍵.4、C【分析】根據(jù)三角形三邊關系求解即可.【詳解】解:A、∵,∴3cm,3cm,6cm不能組成三角形,故選項錯誤,不符合題意;B、∵,∴2cm,5cm,8cm不能組成三角形,故選項錯誤,不符合題意;C、∵,∴25cm,24cm,7cm能組成三角形,故選項正確,符合題意;D、∵,∴1cm,2cm,3cm不能組成三角形,故選項錯誤,不符合題意.故選:C.【點睛】此題考查了三角形三邊關系,解題的關鍵是熟練掌握三角形三邊關系.三角形兩邊之和大于第三邊,兩邊之差小于第三邊.5、C【分析】延長BD交AC于點E,根據(jù)角平分線及垂直的性質可得:,,依據(jù)全等三角形的判定定理及性質可得:,,再根據(jù)三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長BD交AC于點E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點睛】題目主要考查全等三角形的判定和性質,角平分線的定義等,熟練掌握基礎知識,進行邏輯推理是解題關鍵.6、B【分析】根據(jù)全等三角形的性質可得,根據(jù)即可求得答案.【詳解】解:ABC≌DEF,點B、E、C、F在同一直線上,BC=7,EC=4,故選B【點睛】本題考查了全等三角形的性質,掌握全等三角形的性質是解題的關鍵.7、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關鍵.8、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進而逐一進行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項錯誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項錯誤;D選項正確.故選:D.【點睛】本題考查了全等三角形的判定與性質,解決本題的關鍵是掌握全等三角形的判定與性質.9、C【分析】首先根據(jù)△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性質求解即可.【詳解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故選:C.【點睛】此題考查了三角形全等的性質,三角形外角的性質,解題的關鍵是熟練掌握三角形全等的性質,三角形外角的性質.10、D【分析】根據(jù)三角形的內角和定理、鄰補角的性質即可得.【詳解】解:如圖,,,又,,即三角形的外角和是,故選:D.【點睛】本題考查了三角形的內角和定理、鄰補角的性質,熟練掌握三角形的內角和定理是解題關鍵.二、填空題1、③ASA【分析】由題意已知三角形破損部分的邊角,得到原來三角形的邊角,根據(jù)三角形全等的判定方法進行分析即可.【詳解】解:第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.故答案為:③;ASA.【點睛】本題主要考查全等三角形的判定方法的實際應用,要求學生將所學的知識運用于實際生活中,要認真觀察圖形,根據(jù)已知選擇方法.2、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質,根據(jù)全等的性質列出方程是解題的關鍵.3、【分析】根據(jù)角平分線的定義、三角形的外角的性質計算即可.【詳解】∵∠ABC與∠ACD的平分線交于A1點,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案為:.【點睛】本題考查的是三角形的外角的性質,掌握三角形的一個外角等于和它不相鄰的兩個內角的和是解題的關鍵.4、7或3.5【分析】分兩種情況:(1)當P在AC上,Q在BC上時;(2)當P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質,根據(jù)題意得出關于的方程是解題的關鍵.5、2<AC<10【分析】由BF=CE得到BC=EF=6,再根據(jù)三角形三邊關系求解即可.【詳解】解:∵BF=CE,點B、F、C、E在一條直線上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC邊的取值范圍為2<AC<10.【點睛】本題考查三角形的三邊關系,熟知一個三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答的關鍵.6、2【分析】根據(jù)AAS證明△ACD≌△CBE,再利用其性質解答即可.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD與△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE?DE=AD?DE=6?4=2.故答案為:2.【點睛】本題考查三角形全等的判定和性質,要根據(jù)AAS證明△ACD≌△CBE是解題的關鍵.7、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當AP=PB時,∠PAB=∠B,當AP≠PB時,∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對全等三角形,故④正確故答案為:①②④【點睛】本題考查三角形全等判定與性質,掌握全等三角形的判定方法與性質是解題關鍵.8、45【分析】利用三角形的外角性質分別求得∠α和∠β的值,代入求解即可.【詳解】解:根據(jù)題意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α?∠β=120°-75°=45°,故答案為:45.【點睛】本題考查了三角形的外角性質,解答本題的關鍵是明確題意,找到三角板中隱含的角的度數(shù),利用數(shù)形結合的思想解答.9、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當△ACB≌△QAP,∴;當△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點睛】本題主要考查了全等三角形的性質,熟知全等三角形的性質是解題的關鍵.10、2b【分析】由題意根據(jù)三角形三邊關系得到a+b-c>0,b-a-c<0,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點睛】本題考查的是三角形的三邊關系以及去絕對值和整式加減運算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關鍵.三、解答題1、見解析【分析】證明△BAC≌△BDC即可得出結論.【詳解】解:∵BC平分∠ABD,∴∠ABC=∠DBC,在△BAC和△BDC中,∴△BAC≌△BDC,∴AC=DC.【點睛】本題考查角平分線的意義及全等三角形的判定與性質,解題關鍵是掌握角平分線的性質及全等三角形的判定與性質.2、見解析【分析】先由BF=CE說明BC=EF.然后運用SAS證明△ABC≌△DEF,最后運用全等三角形的性質即可證明.【詳解】證明:∵BF=CE,∴B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論