版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省凌源市中考數(shù)學檢測卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,圓形螺帽的內接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm2、用配方法解方程時,原方程應變形為(
)A. B. C. D.3、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.4、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.5、在同一直角坐標系中,一次函數(shù)y=﹣kx+1與二次函數(shù)y=x2+k的大致圖象可以是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、下列四個說法中,不正確的是(
)A.一元二次方程有實數(shù)根B.一元二次方程有實數(shù)根C.一元二次方程有實數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實數(shù)根2、已知A、B兩點的坐標分別是(-2,3)和(2,3),則下面四個結論正確的有(
)A.A、B關于x軸對稱; B.A、B關于y軸對稱;C.A、B關于原點對稱; D.若A、B之間的距離為43、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+174、如圖在四邊形中,,,,為的中點,以點為圓心、長為半徑作圓,恰好使得點在圓上,連接,若,則下列說法中正確的是(
)A.是劣弧的中點 B.是圓的切線C. D.5、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結論中正確的是(
)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,四邊形ABCD為⊙O的內接正四邊形,△AEF為⊙O的內接正三角形,連接DF.若DF恰好是同圓的一個內接正多邊形的一邊,則這個正多邊形的邊數(shù)為_____.2、寫出一個一元二次方程,使它有兩個不相等的實數(shù)根______.3、拋物線的圖象和軸有交點,則的取值范圍是______.4、如果關于的一元二次方程的一個解是,那么代數(shù)式的值是___________.5、如圖,在ABC中,∠C=90°,AB=10,在同一平面內,點O到點A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.四、簡答題(2小題,每小題10分,共計20分)1、某種商品每件的進價為10元,若每件按20元的價格銷售,則每月能賣出360件;若每件按30元的價格銷售,則每月能賣出60件.假定每月的銷售件數(shù)y是銷售價格x(單位:元)的一次函數(shù).(1)求y關于x的一次函數(shù)解析式;(2)當銷售價格定為多少元時,每月獲得的利潤最大?并求此最大利潤.2、某超市經銷一種商品,每件成本為50元.經市場調研,當該商品每件的銷售價為60元時,每個月可銷售300件,若每件的銷售價每增加1元,則每個月的銷售量將減少10件.設該商品每件的銷售價為x元,每個月的銷售量為y件.(1)求y與x的函數(shù)表達式;(2)當該商品每件的銷售價為多少元時,每個月的銷售利潤最大?最大利潤是多少?五、解答題(4小題,每小題10分,共計40分)1、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個交點,交點的橫坐標分別為x1,x2,當x12+x22=10時,求k的值;(3)當﹣4<x≤m時,y有最大值,求m的值.2、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).3、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結BE,OC.(1)求證:.(2)求證:BE是的切線.4、如圖,在⊙O中,點E是弦CD的中點,過點O,E作直徑AB(AE>BE),連接BD,過點C作CFBD交AB于點G,交⊙O于點F,連接AF.求證:AG=AF.-參考答案-一、單選題1、D【分析】根據(jù)圓內接正六邊形的性質可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內接正六邊形的性質可得△AOB是正三角形,過作于設半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉化為直角三角形的問題是解決問題的關鍵.2、D【解析】【分析】移項,配方,變形后即可得出選項.【詳解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故選:D.【考點】本題考查了解一元二次方程,能夠正確配方是解此題的關鍵.3、C【分析】如圖所示,連接CP,由切線的性質和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質,切線長定理,等腰直角三角形的性質與判定,勾股定理,熟知切線長定理是解題的關鍵.4、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,根據(jù)切線的性質得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了相似三角形的判定與性質.5、A【解析】【分析】二次函數(shù)圖象與y軸交點的位置可確定k的正負,再利用一次函數(shù)圖象與系數(shù)的關系可找出一次函數(shù)y=-kx+1經過的象限,對比后即可得出結論.【詳解】解:由y=x2+k可知拋物線的開口向上,故B不合題意;∵二次函數(shù)y=x2+k與y軸交于負半軸,則k<0,∴﹣k>0,∴一次函數(shù)y=﹣kx+1的圖象經過經過第一、二、三象限,A選項符合題意,C、D不符合題意;故選:A.【考點】本題考查了二次函數(shù)的圖象、一次函數(shù)圖象以及一次函數(shù)圖象與系數(shù)的關系,根據(jù)二次函數(shù)的圖象找出每個選項中k的正負是解題的關鍵.二、多選題1、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程有實數(shù)根,正確,不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的情況與判別式△的關系:解題的關鍵是掌握(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.2、BD【解析】【分析】根據(jù)點坐標關于原點對稱、軸對稱的特點,求出對應點坐標即可.【詳解】點A(-2,3)關于x軸對稱的點為(-2,-3),故A錯誤點A(-2,3)關于y軸對稱的點為(2,3),故B正確點A(-2,3)關于原點對稱的點為(2,-3),故C錯誤點A、點B的縱坐標相同,故A、B之間的距離為,故D正確故選BD【考點】本題考查了點坐標關于x,y軸對稱,關于原點中心對稱的特點,以及兩點間距離公式,熟悉對應知識點是解決本題的關鍵.3、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.4、ABC【解析】【分析】直接利用圓周角定理以及結合圓心角、弧、弦的關系、切線的判定方法、平行線的判定方法、四邊形內角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項錯誤.故選擇ABC.【考點】此題主要考查了切線的判定以及圓周角與弧的關系、四邊形內角和、平行線的判定方法等知識,正確掌握相關判定方法是解題關鍵.5、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關鍵.三、填空題1、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計算⊙O的內接正四邊形與內接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設這個正多邊形為n邊形,∵AD,AF分別為⊙O的內接正四邊形與內接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內接一個正十二邊形的一邊.故答案為:12.【考點】本題考查了正多邊形與圓:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓;熟練掌握正多邊形的有關概念.2、x2+x﹣1=0(答案不唯一)【解析】【分析】這是一道開放自主題,只要寫出的方程的Δ>0就可以了.【詳解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程為x2+x﹣1=0.故答案為:x2+x﹣1=0(答案不唯一)【考點】本題考查了一元二次方程根的判別式,掌握“根的判別式大于0,方程有兩個不相等的實數(shù)根”是解題的關鍵.3、且【解析】【分析】由題意知,,計算求解即可.【詳解】解:由題意知,解得故答案為:且.【考點】本題考查了二次函數(shù)與軸的交點個數(shù).解題的關鍵在于熟練掌握二次函數(shù)與軸的交點個數(shù).4、【解析】【分析】根據(jù)關于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關鍵是明確一元二次方程的解的含義.5、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點到點A,B,C的距離相等,如下圖:,,故答案是:5.【點睛】本題考查了直角三角形的外接圓的外心,解題的關鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.四、簡答題1、(1)(2)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元【解析】【分析】(1)設,把,和,代入求出k、b的值,從而得出答案;(2)根據(jù)總利潤=每件利潤×每月銷售量列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)的性質求解可得答案.(1)解:設,把,和,代入可得,解得,則;(2)解:每月獲得利潤.∵,∴當時,P有最大值,最大值為3630.答:當價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元.【考點】本題主要考查了一次函數(shù)解析式的求法和二次函數(shù)的應用,解題的關鍵是理解題意找到其中蘊含的相等關系,并據(jù)此得出函數(shù)解析式及二次函數(shù)的性質,然后再利用二次函數(shù)求最值.2、(1)y=-10x+900;(2)每件銷售價為70元時,獲得最大利潤;最大利潤為4000元【解析】【分析】(1)根據(jù)等量關系“利潤=(售價﹣進價)×銷量”列出函數(shù)表達式即可.(2)根據(jù)(1)中列出函數(shù)關系式,配方后依據(jù)二次函數(shù)的性質求得利潤最大值.【詳解】解:(1)根據(jù)題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數(shù)表達式為:y=-10x+900;(2)設利潤為w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件銷售價為70元時,獲得最大利潤;最大利潤為4000元.【考點】本題考查的是二次函數(shù)在實際生活中的應用.此題難度不大,解題的關鍵是理解題意,找到等量關系,求得二次函數(shù)解析式.五、解答題1、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個函數(shù)的解析式,消去得:再利用根與系數(shù)的關系與可得關于的方程,解方程可得答案;(3)先求解拋物線的對稱軸方程,分三種情況討論,當<<結合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對稱軸為直線x=2,當m<2時,當x=m時,y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當m≥2時,當x=2時,y有最大值,∴=3,∴m=,綜上所述,m的值為-或.【考點】本題考查的是利用待定系數(shù)法求解拋物線的解析式,拋物線與軸的交點坐標,一元二次方程根與系數(shù)的關系,二次函數(shù)的增減性,掌握數(shù)形結合的方法與分類討論是解題的關鍵.2、(1)x1=,x2=(2)x1=4+,x2=4-【解析】【分析】(1)根據(jù)公式法,可得方程的解;(2)根據(jù)配方法,可得方程的解.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026寧夏銀川潔能科技有限公司招聘4人筆試備考題庫及答案解析
- 2026年德宏州事業(yè)單位考試招聘工作人員(208人)筆試參考題庫及答案解析
- 2026上半年安徽事業(yè)單位聯(lián)考合肥市肥東縣招聘51人筆試備考試題及答案解析
- 2026民航醫(yī)學中心(民航總醫(yī)院)招聘應屆畢業(yè)生45人考試備考試題及答案解析
- 2026年度蚌埠醫(yī)科大學公開招聘高層次人才預筆試備考試題及答案解析
- 2026年冶金起重機操作規(guī)范
- 2026年創(chuàng)傷骨科患者護理實務解析
- 2026年民宿設計與運營培訓
- 首都師大附中科學城學校教師招聘筆試備考試題及答案解析
- 2026年贏戰(zhàn)年度計劃的具體落實
- 園林綠化養(yǎng)護日志表模板
- 電池回收廠房建設方案(3篇)
- 《建筑工程定額與預算》課件(共八章)
- 鐵路貨運知識考核試卷含散堆裝等作業(yè)多知識點
- 幼兒游戲評價的可視化研究
- 跨區(qū)銷售管理辦法
- 金華東陽市國有企業(yè)招聘A類工作人員筆試真題2024
- 2025年6月29日貴州省政府辦公廳遴選筆試真題及答案解析
- 管培生培訓課件
- 送貨方案模板(3篇)
- 2025年湖南省中考數(shù)學真題試卷及答案解析
評論
0/150
提交評論