版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省任丘市中考數(shù)學真題分類(勾股定理)匯編定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在水塔O的東北方向24m處有一抽水站A,在水塔的東南方向18m處有一建筑工地B,在AB間建一條直水管,則水管AB的長為(
)A.40m B.45m C.30m D.35m2、在中,,,,的對邊分別是a,b,c,若,,則的面積是(
)A. B. C. D.3、有一個邊長為1的正方形,以它的一條邊為斜邊,向外作一個直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個正方形,稱為第一次“生長”(如圖1);再分別以這兩個正方形的邊為斜邊,向外各自作一個直角三角形,然后分別以這兩個直角三角形的直角邊為邊,向外各作一個正方形,稱為第二次“生長”(如圖2)……如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2021次后形成的圖形中所有的正方形的面積和是(
)A.1 B.2020 C.2021 D.20224、如圖,由6個相同小正方形組成的網(wǎng)格中,A,B,C均在格點上,則∠ABC的度數(shù)為(
)A.45° B.50° C.55° D.60°5、如圖,長方體的底面邊長分別為2cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈達到點B,那么所用細線最短需要(
)A.11cm B.2cm C.(8+2)cm D.(7+3)cm6、如圖,在7×7的正方形網(wǎng)格中,每個小正方形的邊長為1,畫一條線段AB=,使點A,B在小正方形的頂點上,設AB與網(wǎng)格線相交所成的銳角為α,則不同角度的α有(
)A.1種 B.2種 C.3種 D.4種7、已知直角三角形紙片的兩條直角邊長分別為m和n(m<n),過銳角頂點把該紙片剪成兩個三角形,若這兩個三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、勘測隊按實際需要構建了平面直角坐標系,并標示了A,B,C三地的坐標,數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.2、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.3、在△ABC中,∠C=90°,AB=10,AC=8,則BC的長為_____.4、我國古代數(shù)學著作《九章算術》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設折斷處離地面的高度為x尺,根據(jù)題意,可列出關于x方程為:__________.5、如圖,鐵路MN和公路PQ在O點處交匯,公路PQ上A處點距離O點240米,距離MN120米,如果火車行駛時,周圍兩百米以內(nèi)會受到噪音的影響,那么火車在鐵路MN上沿ON方向,以144千米/時的速度行駛時,A處受噪音影響的時間是_______s6、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為.7、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為______.8、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.三、解答題(7小題,每小題10分,共計70分)1、一架梯子長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了7米到C,那么梯子的底端在水平方向滑動了幾米?2、我們知道,到線段兩端距離相等的點在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.(1)如圖1,點P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點P是△APD的準外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準外心P在△ABC的直角邊上,試求AP的長.3、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為ts.(1)出發(fā)3s后,求PQ的長;(2)當點Q在邊BC上運動時,出發(fā)多久后,△PQB能形成等腰三角形?(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.4、已知,如圖,,C為上一點,與相交于點F,連接.,.(1)求證:;(2)已知,,,求的長度.5、在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經(jīng)不通了,某村為方便村民取水決定在河邊新建一個取水點H(A,H,B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是不是從村莊C到河邊的最近路,請通過計算加以說明;(2)求原來的路線AC的長.6、臺風是一種自然災害,它以臺風中心為圓心在周圍上百千米的范圍內(nèi)形成極端氣候,有極強的破壞力,如圖,有一臺風中心沿東西方向由行駛向,已知點為海港,并且點與直線上的兩點,的距離分別為,,又,以臺風中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺風影響嗎?為什么?7、如圖所示的一塊地,已知,,,,,求這塊地的面積.-參考答案-一、單選題1、C【解析】【分析】由題意可知東北方向和東南方向間剛好是一直角,利用勾股定理解圖中直角三角形即可.【詳解】解:∵OA是東北方向,OB是東南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故選:C.【考點】本題考查的知識點是解直角三角形的應用,正確運用勾股定理,善于觀察題目的信息是解題以及學好數(shù)學的關鍵.2、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點】本題主要考查了勾股定理,完全平方公式變形求值,解題的關鍵是將完全平方公式變形求出ab的值.3、D【解析】【分析】根據(jù)題意可得每“生長”一次,面積和增加1,據(jù)此即可求得“生長”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長”了2次后形成的圖形中所有的正方形面積和為3,“生長”了3次后形成的圖形中所有正方形的面積和為4,……“生長”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點】本題考查了勾股數(shù)規(guī)律問題,找到規(guī)律是解題的關鍵.4、A【解析】【分析】連接AC,利用勾股定理分別求出AB、AC、BC,根據(jù)勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根據(jù)三角形內(nèi)角和定理得到答案.【詳解】連接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故選A.【考點】本題考查了等腰三角形,勾股定理的逆定理,解決問題的關鍵是作輔助線構建三角形,熟練掌握等腰三角形的定義和性質(zhì),熟練運用勾股定理的逆定理判斷直角三角形.5、B【解析】【詳解】要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.解:將長方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..6、C【解析】【詳解】如圖,(1)當AB=時,AB與網(wǎng)格線相交所成的兩個銳角:∠=45°;(2)當AB=時,AB與網(wǎng)格線相交所成的銳角∠有2個不同的角度;綜上所述,AB與網(wǎng)格線相交所成的銳角的不同角度有3個.故選C.7、C【解析】【分析】如圖,根據(jù)等腰三角形的性質(zhì)和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.二、填空題1、
20
13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點的縱坐標相同即可求出AB的長度;(2)根據(jù)A、B、C三點的坐標可求出CE與AE的長度,設CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點的縱坐標相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點C作l⊥AB于點E,連接AC,作AC的垂直平分線交直線l于點D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點】本題考查了勾股定理,解題的關鍵是根據(jù)A、B、C三點的坐標求出相關線段的長度,本題屬于中等題型.2、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,掌握中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,關鍵是利用輔助線構造三角形全等.3、6【解析】【分析】根據(jù)勾股定理求解即可.【詳解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC===6故答案為:6.【考點】本題考查勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.4、【解析】【分析】設折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關鍵.5、8【解析】【分析】過點A作AC⊥ON,根據(jù)題意可知AC的長與200米相比較,發(fā)現(xiàn)受到影響,然后過點A作AD=AB=200米,求出BD的長即可得出居民樓受噪音影響的時間.【詳解】解:如圖:過點A作AC⊥ON,AB=AD=200米,∵公路PQ上A處點距離O點240米,距離MN120米,∴AC=120米,當火車到B點時對A處產(chǎn)生噪音影響,此時AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小時=40米/秒,∴影響時間應是:320÷40=8秒.故答案為:8.【考點】本題考查勾股定理的應用.根據(jù)題意構建直角三角形是解題關鍵.6、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關鍵.7、29【解析】【分析】如圖(見解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點】本題考查了勾股定理的應用,熟練掌握勾股定理是解題關鍵.8、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計算,熟記直角三角形的性質(zhì)是解題的關鍵.三、解答題1、(1)12米;(2)7米【解析】【分析】(1)由題意易得AB=CD=13米,OB=5米,然后根據(jù)勾股定理可求解;(2)由題意得CO=5米,然后根據(jù)勾股定理可得求解.【詳解】解:(1)由題意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:這個梯子的頂端距地面有12米高;(2)由題意得,AC=7米,由(1)得AO=12米,∴CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=132-52=169-25=144,解得OD=12米∴BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑動了7米.【考點】本題主要考查勾股定理,熟練掌握勾股定理是解題的關鍵.2、(1)見解析;(2)AP的長為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點P是△APD的準外心;(2)先利用勾股定理計算AC=4,再進行討論:當P點在AB上,PA=PB,當P點在AC上,PA=PC,易得對應AP的值;當P點在AC上,PB=PC,設AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時AP的長.【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點P是△APD的準外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當P點在AB上,PA=PB,則APAB;當P點在AC上,PA=PC,則APAC=2,當P點在AC上,PB=PC,如圖2,設AP=t,則PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此時AP,綜上所述,AP的長為或2或.【考點】本題考查了全等三角形的判定與性質(zhì),勾股定理及新定義的運用能力.理解題中給的定義是解題的關鍵.3、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結(jié)論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質(zhì)可得到BP=BQ,可得到關于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質(zhì)可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關于t的方程,可求得t的值.(1)當t=3時,則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由題意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,當△PQB為等腰三角形時,則有BP=BQ,即16﹣t=2t,解得t=,∴出發(fā)秒后△PQB能形成等腰三角形;(3)①當CQ=BQ時,如圖1所示,則∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②當CQ=BC時,如圖2所示,則BC+CQ=24,∴t=24÷2=12秒.③當BC=BQ時,如圖3所示,過B點作BE⊥AC于點E,則BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.綜上所述:當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【考點】本題考查了勾股定理、等腰三角形的性質(zhì)、方程思想及分類討論思想等知識.用時間t表示出相應線段的長,化“動”為“靜”是解決這類問題的一般思路,注意方程思想的應用.4、(1)證明見解析;(2)【解析】【分析】(1)先證明再結(jié)合證明從而可得結(jié)論;(2)先證明再證明從而利用等面積法可得的長度.【詳解】解:(1),而(2),,,【考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高血壓增高病人的護理創(chuàng)新方法
- 老年人手足部清潔護理的常見問題及解決方案
- 第1節(jié)金屬礦物及鐵的冶煉
- 2026福建海峽人力資源股份有限公司漳州分公司招聘1人考試參考題庫及答案解析
- 2026上半年云南事業(yè)單位聯(lián)考云南體育運動職業(yè)技術學院 公開招聘人員參考考試題庫及答案解析
- 卒中日策劃活動方案(3篇)
- 安全衛(wèi)生管理制度打印(3篇)
- 中秋護膚活動策劃方案(3篇)
- 寧句施工方案(3篇)
- 2026山東事業(yè)單位統(tǒng)考日照市市屬招聘初級綜合類崗位人員21人備考考試試題及答案解析
- 員工個人成長經(jīng)歷分享
- 自平衡多級泵培訓課件
- 晝夜明暗圖課件
- 壓力性尿失禁教學課件
- 雨課堂在線學堂《大數(shù)據(jù)技術與應用》作業(yè)單元考核答案
- 光伏電纜專業(yè)知識培訓課件
- 養(yǎng)牛場消防知識培訓
- 小兒體液不足的護理措施
- 管控人力成本課件
- 插胃管課件教學課件
- 車輛維修采購項目方案投標文件(技術方案)
評論
0/150
提交評論