難點解析-山東省新泰市中考數學真題分類(平行線的證明)匯編定向訓練試題(詳解)_第1頁
難點解析-山東省新泰市中考數學真題分類(平行線的證明)匯編定向訓練試題(詳解)_第2頁
難點解析-山東省新泰市中考數學真題分類(平行線的證明)匯編定向訓練試題(詳解)_第3頁
難點解析-山東省新泰市中考數學真題分類(平行線的證明)匯編定向訓練試題(詳解)_第4頁
難點解析-山東省新泰市中考數學真題分類(平行線的證明)匯編定向訓練試題(詳解)_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省新泰市中考數學真題分類(平行線的證明)匯編定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,∠A=30°,∠B=50°,將點A與點B分別沿MN和EF折疊,使點A、B與點C重合,則∠NCF的度數為(

).A.22° B.21° C.20° D.19°2、將一副學生用的三角板(一個銳角為30°的直角三角形,一個銳角為45°的直角三角形)如圖疊放,則下列4個結論中正確的個數有(

)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,則OC平分∠AOBA.0 B.1 C.2 D.33、如圖,將△ABC紙片沿DE折疊,點A的對應點為A’,若∠B=60°,∠C=80°,則∠1+∠2等于(

)A.40° B.60° C.80° D.140°4、兩個直角三角板如圖擺放,其中,,,AB與DF交于點M.若,則的大小為(

)A. B. C. D.5、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點,如果設∠BAC=n°,那么用含n的代數式表示∠BOC的度數是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°6、如圖,△ABC中,已知∠B=∠C,點E,F,P分別是AB,AC,BC上的點,且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數是(

)A.34° B.36° C.38° D.40°7、中,它的三條角平分線的交點為O,若∠B=80°,則∠AOC的度數為()A.100° B.130° C.110° D.150°8、如圖,平面上直線a、b分別經過線段OK的兩個端點,則直線a、b相交所成的銳角的度數是(

)A.20° B.30°C.70° D.80°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,,的平分線相交于點,的平分線相交于點,,的平分線相交于點……以此類推,則的度數是___________(用含與的代數式表示).2、已知△ABC,∠A=80°,BF平分外角∠CBD,CF平分外角∠BCE,BG平分∠CBF,CG平分外角∠BCF,則∠G=______°.3、下列命題中,其逆命題成立的是__.(只填寫序號)①同旁內角互補,兩直線平行;②如果兩個角是直角,那么它們相等;③如果兩個實數相等,那么它們的平方相等;④如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.4、如圖,將分別含有、角的一副三角板重疊,使直角頂點重合,若兩直角重疊形成的角為,則圖中角的度數為_______.5、請寫出命題“如果,那么”的逆命題:________.6、如圖,在△ABC中,∠ACB=60°,D為△ABC邊AC上一點,BC=CD,點M在BC的延長線上,CE平分∠ACM,且AC=CE.連接BE交AC于F,G為邊CE上一點,滿足CG=CF,連接DG交BE于H.以下結論:①△ABC≌△EDC;②∠DHF=60°;③若∠A=60°,則AB∥CE;④若BE平分∠ABC中,則EB平分∠DEC;正確的有_____(只填序號)7、如圖,一束光沿方向,先后經過平面鏡、反射后,沿方向射出,已知,,則_________.三、解答題(7小題,每小題10分,共計70分)1、如圖,點E,C在線段BF上,∠A=∠D,AB∥DE,BC=EF.求證:AC=DF.2、(1)探究:如圖1,求證:;(2)應用:如圖2,,,求的度數.

3、如圖,在四邊形中,,,平分交于點,交的延長線于點.(1)求的大??;(2)若,求的大?。?、已知:如圖,A、F、C、D在同一直線上,AB∥DE,AB=DE,AF=CD,求證:(1)BC=EF;(2)BC∥EF.5、用兩種方法證明“三角形的外角和等于360°”.已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個外角.求證:∠BAE+∠CBF+∠ACD=360°.證法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.請把證法1補充完整,并用不同的方法完成證法2.6、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數.7、已知:如圖1,,BD平分,,過點A作直線,延長CD交MN于點E(1)當時,的度數為______.(2)如圖2,當時,求的度數;(3)設,用含x的代數式表示的度數.-參考答案-一、單選題1、C【解析】【分析】根據三角形的內角和定理可得∠ACB=100°,再由折疊的性質可得∠ACN=∠A=30°,∠FCE=∠B=50°,即可求解.【詳解】解:∵∠A=30°,∠B=50°,∴∠ACB=100°,∵將點A與點B分別沿MN和EF折疊,使點A、B與點C重合,∴∠ACN=∠A=30°,∠FCE=∠B=50°,∴∠NCF=20°,故選:C.【考點】本題主要考查了圖形的折疊的性質、三角形內角和定理、熟練掌握圖形的折疊的性質、三角形內角和定理是解題的關鍵.2、D【解析】【分析】根據同角的余角相等可得∠AOC=∠BOD;根據三角形的內角和即可得出∠AOC-∠CEA=15°;根據角平分線的定義可判定OC平分∠AOB.【詳解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正確;如圖,AB與OC交于點P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正確;如果OB平分∠DOC,則∠DOB=∠BOC=45°,則∠AOC=∠BOC=45°,故OC平分∠AOB,故④正確;由②知:∠AOC=∠BOD,故當∠AOC=∠BOD=45°時,∠AOC+∠BOD=90°成立,否則不成立,故①不正確;綜上,②③④正確,共3個,故選:D.【考點】本題考查了余角以及三角形內角和定理,角平分線的定義,熟知余角的性質以及三角形內角和是180°是解答此題的關鍵.3、C【解析】【分析】根據平角定義和折疊的性質,得,再利用三角形的內角和定理進行轉換,得從而解題.【詳解】解:根據平角的定義和折疊的性質,得.又,,,∴,故選:C【考點】此題綜合運用了平角的定義、折疊的性質和三角形的內角和定理.4、C【解析】【分析】根據,可得再根據三角形內角和即可得出答案.【詳解】由圖可得∵,∴∴故選:C.【考點】本題考查了平行線的性質和三角形的內角和,掌握平行線的性質和三角形的內角和是解題的關鍵.5、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據三角形內角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據三角形的外角性質有∠BOC=∠EBD+∠BEO,計算即可得到∠BOC的度數.【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點】本題考查了三角形的外角性質,垂直的定義以及三角形內角和定理,掌握以上性質定理是解答本題的關鍵.6、A【解析】【分析】由三角形內角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點】本題考查了三角形內角和定理,全等三角形的判定和性質,三角形外角的性質;掌握全等三角形的判定定理和性質是解題關鍵.7、B【解析】【分析】先根據角平分線的定義可得,,再根據三角形的內角和定理可得,然后根據三角形的內角和定理可得,由此即可得出答案.【詳解】如圖,∵AO,CO分別是,的角平分線∴,∴又∵∴∴故選:B.【考點】本題考查了角平分線的定義、三角形的內角和定理等知識點,掌握三角形的內角和定理是解題關鍵.8、B【解析】【分析】根據三角形的外角的性質列式計算即可.【詳解】解:如圖:由三角形的外角的性質可知,∠OFK+70°=100°,解得,∠OFK=30°,故選B.【考點】本題考查的是三角形的外角的性質,掌握三角形的一個外角等于和它不相鄰的兩個內角的和是解題的關鍵.二、填空題1、【解析】【分析】由∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,而P1B、P1C分別平分∠ABC和∠ACD,得到∠ACD=2∠P1CD,∠ABC=2∠P1BC,于是有∠A=2∠P1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出規(guī)律.【詳解】∵P1B、P1C分別平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=∠A,同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠Pn,∴∠Pn=.故答案為:.【考點】本題考查了三角形的內角和定理:三角形的內角和為180°.也考查了三角形的外角性質以及角平分線性質,難度適中.2、115【解析】【分析】由三角形外角的性質即三角形的內角和定理可求解∠DBC+∠ECB=260°,再利用角平分線的定義可求解∠FBC+∠FCB=130°,即可得∠GBC+∠GCB=65°,再利用三角形內角和定理可求解.【詳解】解:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,∵∠ACB+∠A+∠ABC=180°,∴∠DBC+∠ECB=∠A+180°=80°+180°=260°,∵BF平分外角∠DBC,CF平分外角∠ECB,∴∠FBC=∠DBC,∠FCB=∠ECB,∴∠FBC+∠FCB=(∠DBC+∠ECB)=130°,∵BG平分∠CBF,CG平分∠BCF,∴∠GBC=∠FBC,∠GCB=∠FCB,∴∠GBC+∠GCB=(∠FBC+∠FCB)=65°,∴∠G=180°-(∠GBC-∠GCB)=180°-65°=115°.故答案為:115.【考點】本題主要考查三角形的內角和定理,三角形外角的性質,角平分線的定義,求解∠FBC+∠FCB=130°是解題的關鍵.3、①④##④①【解析】【詳解】把一個命題的條件和結論互換就得到它的逆命題,再分析逆命題是否為真命題,需要分別分析各題設是否能推出結論,從而利用排除法得出答案.①兩直線平行,同旁內角互補,正確;②如果兩個角相等,那么它們是直角,錯誤;③如果兩個實數的平方相等,那么這兩個實數相等,錯誤;④如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,正確.故答案為①④.4、##140度【解析】【分析】如圖,首先標注字母,利用三角形的內角和求解,再利用對頂角的相等,三角形的外角的性質可得答案.【詳解】解:如圖,標注字母,由題意得:故答案為:【考點】本題考查的是三角形的內角和定理,三角形的外角的性質,掌握以上知識是解題的關鍵.5、如果,那么【解析】【分析】根據逆命題的概念解答即可.【詳解】解:命題“如果,那么”的逆命題是“如果,那么”,故答案為:如果,那么.【考點】此題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結論,而第一個命題的結論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.6、①②③④【解析】【分析】①可推導∠ACB=∠ACE=60°,進而可證全等;②先證△BFC≌△DGC,得到∠FBC=∠CDG,∠BFC=∠DFH,從而推導得出∠BCF=∠DHF=60°;③由∠A=60°,∠ACE=60°,可得∠A=∠ACE,即可得出ABCE;④利用△BCE的外角∠ECM和△ABC的外角∠ACM的關系,結合∠DEC=∠A可推導得出.【詳解】解:∵∠ACB=60°,∴∠ACM=180°?∠ACB=120°,∵CE平分∠ACM,∴∠ACE=∠MCE=∠ACM=60°,∴∠ACB=∠ACE.在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),故①正確;在△BCF和△DCG中,,∴△BCF≌△DCG(SAS).∴∠CBF=∠CDG.∵∠ECM=∠CBF+∠BEC=60°,∴∠CDG+∠CEB=60°.∵∠DCE+∠CDE+∠CED=180°,∠DCE=60°,∴∠CDE+∠CED=120°,∴∠HDE+∠HED=60°,∴∠DHF=∠HDE+∠HED=60°,故②正確;∵∠A=60°,∠ACE=60°,∴∠A=∠ACE,∴AB∥CE,故③正確;∵BE平分∠ABC,∴∠ABE=∠CBE.∵△BCF≌△DCG,∴∠CBE=∠CDG.∴∠CDG=∠ABE=∠CBE.∵△ABC≌△EDC,∴∠ABC=∠CDE,∴∠CDG=∠ABE=∠CBE=∠EDG.∵∠ECM=∠CBF+∠BEC=60°,∠DHF=∠EDG+∠DEB=60°,∴∠CBF+∠BEC=∠EDG+∠DEB,∴∠BEC=∠DEB,即EB平分∠DEC,故④正確;綜上,正確的結論有:①②③④.故答案為:①②③④.【考點】本題主要考查了全等三角形的判定定理和性質定理,角平分線的定義,三角形的內角和定理以及平行線的判定定理,正確找出圖中的全等三角形是解題的關鍵.7、40°##40度【解析】【分析】根據入射角等于反射角,可得,根據三角形內角和定理求得,進而即可求解.【詳解】解:依題意,,∵,,,∴,.故答案為:40.【考點】本題考查了軸對稱的性質,三角形內角和定理的應用,掌握軸對稱的性質是解題的關鍵.三、解答題1、見解析【解析】【分析】根據條件證明△ABC≌△DEF即可得解;【詳解】證明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC與△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF.【考點】本題主要考查了三角形全等的判定與性質,結合平行線的性質求解是解題的關鍵.2、230°【解析】【分析】(1)連接OA并延長,由三角形外角的性質可知∠1+∠B=∠3,∠2+∠C=∠4,兩式相加即可得出結論;(2)連接AD,由(1)的結論可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,兩式相加即可得出結論.【詳解】(1)如圖1,連接AO并延長,∵是的外角,∴.①;∵是的外角,∴②;①+②,得,∴.(2)如圖2,連接AD.由(1),得③;④;③+④得:,∵,,∴.

【考點】本題考查的是三角形外角的性質,根據題意作出輔助線,構造出三角形是解答此題的關鍵.3、(1)25°(2)23°【解析】【分析】(1)先由平行線的性質求出∠ABC=180°-∠BCD=180°-130°=50°,再根據解平分線的定義求解即可;∠BAD=180°-∠ADC=180°-48°=132°,再根據三角形內角和定理求出(2)先由平行線的性質求出∠AEB=180°-∠BAD-∠ABE=23°,最后由對頂角性質得解.(1)解:∵,∴∠ABC+∠BCD=180°,∴∠ABC=180°-∠BCD=180°-130°=50°,∵平分∴∠ABE=∠ABC==25°;(2)解:∵,∴∠BAD+∠ADC=180°,∴∠BAD=180°-∠ADC=180°-48°=132°,∵∠BAD+∠ABE+∠AEB=180°,又由(1)知:∠ABE=25°,∴∠AEB=180°-∠BAD-∠ABE=180°-132°-25°=23°,∴∠DEF=∠AEB=23°.【考點】本題考查平行線的性質,角平分線定義,三角形內角和定理,對頂角性質,熟練掌握平行線的性質是解題的關鍵.4、(1)證明見解析(2)證明見解析【解析】【分析】(1)根據平行線的性質和全等三角形的判定和性質解答即可.(2)根據全等三角形的性質和平行線的判定解答即可.(1)證明:(1),,,,在與中,,.(2)(2),,.【考點】考查了全等三角形的判定與性質、平行線的判定與性質等知識,證明三角形全等是解決問題的關鍵.5、證法1:平角等于180°;∠1+∠2+∠3=180°;證法二見解析【解析】【詳解】試題分析:證法1:根據平角的定義得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根據三角形內角和定理和角的和差關系即可得到結論;證法2:要求證∠BAE+∠CBF+∠ACD=360°,根據三角形外角性質得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,則∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論