難點解析云南省彌勒市中考數(shù)學真題分類(勾股定理)匯編綜合測評試卷(含答案詳解)_第1頁
難點解析云南省彌勒市中考數(shù)學真題分類(勾股定理)匯編綜合測評試卷(含答案詳解)_第2頁
難點解析云南省彌勒市中考數(shù)學真題分類(勾股定理)匯編綜合測評試卷(含答案詳解)_第3頁
難點解析云南省彌勒市中考數(shù)學真題分類(勾股定理)匯編綜合測評試卷(含答案詳解)_第4頁
難點解析云南省彌勒市中考數(shù)學真題分類(勾股定理)匯編綜合測評試卷(含答案詳解)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省彌勒市中考數(shù)學真題分類(勾股定理)匯編綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.802、已知直角三角形紙片的兩條直角邊長分別為m和n(m<n),過銳角頂點把該紙片剪成兩個三角形,若這兩個三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=03、在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別是1,2,3,正放置的四個正方形的面積依次是S1,S2,S3,S4,則S1+S2+S3+S4=()A.4 B.5 C.6 D.74、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結論中不正確的是(

)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形5、如圖,在水塔O的東北方向24m處有一抽水站A,在水塔的東南方向18m處有一建筑工地B,在AB間建一條直水管,則水管AB的長為(

)A.40m B.45m C.30m D.35m6、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點,直線l經過點D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.37、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點,沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F,已知EF=,則BC的長是()A. B.3 C.3 D.3第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點E在BC上,將△ABC沿AE折疊,使點B落在AC邊上的點B′處,則BE的長為________________.2、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.3、把兩個同樣大小含角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個三角尺的直角頂點重合于點,且另外三個銳角頂點在同一直線上.若,則____.4、已知a、b、c是一個三角形的三邊長,如果滿足,則這個三角形的形狀是_______.5、我國古代數(shù)學著作《九章算術》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達池邊的水面D處,問水的深度是多少?則水深DE為_____尺.6、我國古代的數(shù)學名著《九章算術》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設繩索的長為尺,根據(jù)題意,可列方程為__________.7、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.8、如圖所示,數(shù)軸上點A所表示的數(shù)為_______.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知半徑為5的⊙M經過x軸上一點C,與y軸交于A、B兩點,連接AM、AC,AC平分∠OAM,AO+CO=6(1)判斷⊙M與x軸的位置關系,并說明理由;(2)求AB的長;(3)連接BM并延長交圓M于點D,連接CD,求直線CD的解析式.2、數(shù)學中,常對同一個量(圖形的面積、點的個數(shù)等)用兩種不同的方法計算,從而建立相等關系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學思想,由它可以推導出很多重要的公式.(1)如圖1,是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖2的方式拼成一個正方形.①用“算兩次”的方法計算圖2中陰影部分的面積:第一次列式為,第二次列式為,因為兩次所列算式表示的是同一個圖形的面積,所以可以得出等式;②在①中,如果,,請直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個邊長分別為,,的直角三角形和一個兩條直角邊都是的直角三角形拼成一個梯形,用“算兩次”的方法,探究,,之間的數(shù)量關系.3、一個25米長的梯子,斜靠在一豎直的墻上,這時的距離為24米,如果梯子的頂端A沿墻下滑4米,那么梯子底端B外移多少米?4、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項目,工作人員告訴小敏,該項目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質平臺的主視圖.小敏經過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯誤,請求出立柱AB段的正確長度.5、我們知道,到線段兩端距離相等的點在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.(1)如圖1,點P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點P是△APD的準外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準外心P在△ABC的直角邊上,試求AP的長.6、如圖,煙臺市正政府決定在相距50km的A、B兩村之間的公路旁E點,修建一個大櫻桃批發(fā)市場,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大櫻桃批發(fā)市場E應建什么位置才能符合要求?7、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當n>1時,n2﹣1,2n,B為直角三角形的三邊長,如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ8勾股數(shù)組Ⅱ35-參考答案-一、單選題1、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.2、C【解析】【分析】如圖,根據(jù)等腰三角形的性質和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.3、A【解析】【詳解】解:由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.【考點】勾股定理包含幾何與數(shù)論兩個方面,幾何方面,一個直角三角形的斜邊的平方等于另外兩邊的平方和.這里,邊的平方的幾何意義就是以該邊為邊的正方形的面積.4、A【解析】【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果

a2=b2-c2,即b2=a2+c2,那么△ABC

是直角三角形且∠B=90°,選項錯誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC

是直角三角形,選項正確,不符合題意;C、如果

a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC

是直角三角形,選項正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC

是直角三角形,選項正確,不符合題意;故選:A.【考點】本題考查的是直角三角形的判定和勾股定理的逆定理的應用,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.5、C【解析】【分析】由題意可知東北方向和東南方向間剛好是一直角,利用勾股定理解圖中直角三角形即可.【詳解】解:∵OA是東北方向,OB是東南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故選:C.【考點】本題考查的知識點是解直角三角形的應用,正確運用勾股定理,善于觀察題目的信息是解題以及學好數(shù)學的關鍵.6、A【解析】【分析】把要求的最大值的兩條線段經過平移后形成一條線段,然后再根據(jù)垂線段最短來進行計算即可.【詳解】解:如圖,過點C作CK⊥l于點K,過點A作AH⊥BC于點H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點D為BC中點,∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長AE,過點C作CN⊥AE于點N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當直線l⊥AC時,最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點】本題主要考查了全等三角形的判定定理和性質定理及平移的性質,構建全等三角形是解答此題的關鍵.7、B【解析】【分析】折疊的性質主要有:1.重疊部分全等;2.折痕是對稱軸,對稱點的連線被對稱軸垂直平分.由折疊的性質可知,所以可求出∠AFB=90°,再直角三角形的性質可知,所以,的長可求,再利用勾股定理即可求出BC的長.【詳解】解:AB=AC,,故選B.【考點】本題考查了折疊的性質、等腰直角三角形的判斷和性質以及勾股定理的運用,求出∠AFB=90°是解題的關鍵.二、填空題1、.【解析】【分析】首先根據(jù)勾股定理求出BC的長,根據(jù)折疊性質,可得=AB=3,=BE,∠B=∠=90°,然后設BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點】本題主要考查了翻折變換的性質及勾股定理的應用;解題的關鍵是準確找出圖形中隱含的相等關系.2、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.3、.【解析】【分析】如圖,先利用等腰直角三角形的性質求出,,再利用勾股定理求出DF,即可得出結論.【詳解】如圖,過點作于,在中,,,,兩個同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.4、直角三角形【解析】【分析】根據(jù)絕對值、完全平方數(shù)和算數(shù)平方根的非負性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點】本題主要考查了非負數(shù)的性質和勾股定理的逆定理,運用非負數(shù)的性質求出a、b、c的值是解題的關鍵.5、12【解析】【分析】設水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點】本題主要考查勾股定理的應用,熟練根據(jù)勾股定理列出方程是解題的關鍵.6、x2?(x?3)2=82【解析】【分析】設繩索長為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設繩索長為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點】本題考查了勾股定理的應用,找準等量關系,正確列出相應方程是解題的關鍵.7、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質,平行線性質,三角形全等判定與性質,勾股定理,掌握中線性質,平行線性質,三角形全等判定與性質,勾股定理,關鍵是利用輔助線構造三角形全等.8、【解析】【分析】根據(jù)數(shù)軸上點的特點和相關線段的長,結合勾股定理求出斜邊長,即可求出-1和A之間的線段的長,即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長為,那么-1和A之間的距離為,那么數(shù)軸上點A所表示的數(shù)為:.故答案為:.【考點】本題考查實數(shù)與數(shù)軸之間的對應關系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長是解答本題的關鍵.三、解答題1、(1)⊙M與x軸相切,理由見解析(2)6(3)【解析】【分析】(1)連接CM,證CM⊥x即可得出結論;(2)過點M作MN⊥AB于N,證四邊形OCMN是矩形,得MN=OC,ON=OM=5,設AN=x,則OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂徑定理得AB=2AN即可求解;(3)連接BC,CM,過點D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=,在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,從而得出點D坐標,然后用待定系數(shù)法求出直線CD解析式即可.(1)解:⊙M與x軸相切,理由如下:連接CM,如圖,∵MC=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵MC是⊙M的半徑,點C在x軸上,∴⊙M與x軸相切;(2)解:如圖,過點M作MN⊥AB于N,由(1)知,∠MCO=90°,∵MN⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四邊形OCMN是矩形,∴MN=OC,ON=CM=5,∵OA+OC=6,設AN=x,

∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合題意,舍去),∴AN=3,∴AB=2AN=6;(3)解:如圖,連接BC,CM,過點D作DP⊥CM于P,由(2)知:AB=6,OA=2,OC=4,∴OB=8,C(4,0)在Rt△BOC中,∠BOC=90°,由勾股定理,得BC=,∵BD是⊙M的直徑,∴∠BCD=90°,BD=10,在Rt△BCD中,∠BCD=90°,由勾股定理,得CD=,即CD2=20,在Rt△CPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,在Rt△MPD中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,∴20-CP2=10CP-CP2,

∴CP=2,∴PD2=20-CP2=20-4=16,∴PD=4,即D點橫坐標為OC+PD=4+4=8,∴D(8,-2),設直線CD解析式為y=kx+b,把C(4,0),D(8,-2)代入,得,解得:,∴直線CD的解析式為:.【考點】本題考查直線與圓相切的判定,勾股定理,圓周角定理的推論,垂徑定理,待定系數(shù)法求一次函數(shù)解析式,熟練掌握直線與圓相切的判定、待定系數(shù)法求一次函數(shù)解析式的方法是解題的關鍵.2、(1)①,,;或,,;②9;(2)【解析】【分析】(1)①第一次求解陰影部分的邊長,再計算面積,第二次利用大的正方形的面積減去四個長方形的面積,從而可建立等式;②直接利用公式,再整體代入求值即可;(2)第一次利用梯形的面積公式計算,第二次利用圖形的面積和計算,從而得到公式,再整理即可得到答案.【詳解】解:(1)因為小正方形的邊長為:所以第一次計算的面積為:,第二次計算的面積為:,所以:;或,,②∵,∴(3)第一次利用梯形的面積公式圖形面積為:第二次利用圖形的面積和計算為:整理得:【考點】本題考查的是利用幾何圖形的面積推導代數(shù)公式,掌握等面積法推導兩個完全平方公式之間的關系,推導勾股定理是解題的關鍵.3、8米.【解析】【分析】梯子下滑4米,梯子的長度不變始終為25米,利用勾股定理分別求出OB、OB'的長度,進而求出BB'的長度即可.【詳解】解:如圖,依題意可知AB=25(米),AO=24(米),∠O=90°,∴BO2=AB2﹣AO2=252-242,∴BO=7(米),移動后,=20(米),∴(米),∴(米).答:梯子底端B外移8米.【考點】本題考查的是勾股定理的應用及勾股定理在直角三角形中的正確運用,本題中求的長度是解題的關鍵.4、小敏的猜想錯誤,立柱AB段的正確長度長為9米.【解析】【分析】延長FC交AB于點G,設BG=x米,在Rt△BGC中利用勾股定理可求x,進而可得AB的正確長度【詳解】解:如圖,延長FC交AB于點G則CG⊥AB,AG=CD=1米,GC=AD=15米設BG=x米,則BC=(26-1-x)米在Rt△BGC中,∵∴解得

∴BA=BG+GA=8+1=9(米)∴小敏的猜想錯誤,立柱AB段的正確長度長為9米.【考點】本題主要考查勾股定理的應用,解題的關鍵是作出輔助線,構造直角三角形5、(1)見解析;(2)AP的長為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點P是△APD的準外心;(2)先利用勾股定理計算AC=4,再進行討論:當P點在AB上,PA=PB,當P點在AC上,PA=PC,易得對應AP的值;當P點在AC上,PB=PC,設AP=t,則PC=PB=4﹣x,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論