難點解析-青海省玉樹市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測試試題_第1頁
難點解析-青海省玉樹市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測試試題_第2頁
難點解析-青海省玉樹市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測試試題_第3頁
難點解析-青海省玉樹市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測試試題_第4頁
難點解析-青海省玉樹市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測試試題_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

青海省玉樹市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點,A點有一只螞蟻,想到B點去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(

)A.6 B.8 C.9 D.152、如圖,△OAB的頂點O(0,0),頂點A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點A的坐標是(

)A. B. C. D.3、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.4、如圖,中,,一同學(xué)利用直尺和圓規(guī)完成如下操作:①以點C為圓心,以CB為半徑畫弧,交AB于點G;分別以點G、B為圓心,以大于的長為半徑畫弧,兩弧交點K,作射線CK;②以點B為圓心,以適當(dāng)?shù)拈L為半徑畫弧,交BC于點M,交AB的延長線于N,分別以M、N為圓心,以大于的長為半徑畫弧,兩弧交于點P,作直線BP交AC的延長線于點D,交射線CK于點E.請你觀察圖形,根據(jù)操作結(jié)果解答下列問題;過點D作交AB的延長線于點F,若,,則CE的長為(

)A.13 B. C. D.5、在中,,,,的對邊分別是a,b,c,若,,則的面積是(

)A. B. C. D.6、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點,沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F,已知EF=,則BC的長是()A. B.3 C.3 D.37、已知直角三角形的兩條邊長分別是3和4,那么這個三角形的第三條邊的長為(

)A.5 B.25 C. D.5或第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在高2米,坡角為30°的樓梯表面鋪地毯,地毯的長至少需______米.2、圖①所示的正方體木塊棱長為6cm,沿其相鄰三個面的對角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點A爬行到頂點B的最短距離為_____cm.3、如圖,在中,,,,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點處,兩條折痕與斜邊AB分別交于點E、F,則DF的長為_________.4、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.5、如圖所示,在四邊形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,則∠ACB的度數(shù)等于_____.6、如圖,在中,,將線段繞點順時針旋轉(zhuǎn)至,過點作,垂足為,若,,則的長為__.7、如圖,在一次綜合實踐活動中,小明將一張邊長為10cm的正方形紙片ABCD,沿著BC邊上一點E與點A的連線折疊,點B'是點B的對應(yīng)點,延長EB'交DC于點G,B'G=cm,則△ECG的面積為_____cm2.8、我國古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問:葭長幾何?(1丈=10尺).意思是:有一個長方體池子,底面是邊長為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒有折斷),剛好貼在池邊上,問:蘆葦長多少尺?答:蘆葦長____________尺.三、解答題(7小題,每小題10分,共計70分)1、細心觀察圖形,認真分析各式,然后解答問題.OA22=,;OA32=12+,;OA42=12+,…(1)請用含有n(n是正整數(shù))的等式表示上述變規(guī)律:OAn2=______;Sn=______.(2)求出OA10的長.(3)若一個三角形的面積是,計算說明他是第幾個三角形?(4)求出S12+S22+S32+…+S102的值.2、如圖,小明家在一條東西走向的公路北側(cè)米的點處,小紅家位于小明家北米(米)、東米(米)點處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點處建一個快遞驛站,使最小,請確定點的位置,并求的最小值.3、閱讀理解:【問題情境】教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗證勾股定理嗎?【探索新知】從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積+4個直角三角形的面積.從而得數(shù)學(xué)等式:(a+b)2=c2+4×ab,化簡證得勾股定理:a2+b2=c2.【初步運用】(1)如圖1,若b=2a,則小正方形面積:大正方形面積=;(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a=4,b=6,此時空白部分的面積為;(3)如圖3,將這四個直角三角形緊密地拼接,形成風(fēng)車狀,已知外圍輪廓(實線)的周長為24,OC=3,求該風(fēng)車狀圖案的面積.(4)如圖4,將八個全等的直角三角形緊密地拼接,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=40,則S2=.【遷移運用】如果用三張含60°的全等三角形紙片,能否拼成一個特殊圖形呢?帶著這個疑問,小麗拼出圖5的等邊三角形,你能否仿照勾股定理的驗證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關(guān)系,寫出此等量關(guān)系式及其推導(dǎo)過程.4、閱讀理解:課堂上學(xué)習(xí)了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學(xué)生觀察:3,4,5;5,12,13;7,24,25;9,40,41;……學(xué)生發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過,于是王老師提出以下問題讓學(xué)生解決.(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11,_________,_________;(2)若第一個數(shù)用字母(為奇數(shù),且)表示,則后兩個數(shù)用含的代數(shù)式分別怎么表示?聰明的小明發(fā)現(xiàn)每組第二個數(shù)有這樣的規(guī)律:,,,……于是他很快表示出了第二個數(shù)為,則用含的代數(shù)式表示第三個數(shù)為_________.(3)用所學(xué)知識說明(2)中用表示的三個數(shù)是勾股數(shù).5、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.6、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))7、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.-參考答案-一、單選題1、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點到A點的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因為AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點】本題考查了勾股定理的應(yīng)用,掌握勾股定理的應(yīng)用并能得出平面展開圖是解題的關(guān)鍵.2、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點A的坐標是(4,3),故選:D.【考點】本題考查了坐標與圖形,全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.3、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.【考點】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識,關(guān)鍵是推出∠CEF=∠CFE.4、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設(shè)CE=CD=DF=x,在Rt△ADF中,利用勾股定理構(gòu)建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設(shè)EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點】本題考查作圖-復(fù)雜作圖,全等三角形的判定和性質(zhì),等腰三角形的判定,以及勾股定理等知識,解題的關(guān)鍵是學(xué)會構(gòu)建方程解決問題,屬于中考??碱}型.5、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.6、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對稱軸,對稱點的連線被對稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長可求,再利用勾股定理即可求出BC的長.【詳解】解:AB=AC,,故選B.【考點】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運用,求出∠AFB=90°是解題的關(guān)鍵.7、D【解析】【分析】分情況討論:①當(dāng)邊長為4的邊作斜邊時;②當(dāng)邊長為4的邊作直角邊時,利用勾股定理分別求解即可.【詳解】解:當(dāng)邊長為4的邊作斜邊時,第三條邊的長度為;當(dāng)邊長為4的邊作直角邊時,第三條邊的長度為;綜上分析可知,這個三角形的第三條邊的長為5或,故D正確.故選:D.【考點】本題主要考查了勾股定理,掌握分類討論的思想是解題的關(guān)鍵.二、填空題1、2+2【解析】【分析】地毯的豎直的線段加起來等于BC,水平的線段相加正好等于AC,即地毯的總長度至少為(AC+BC).【詳解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=m,∴AC+BC=2+2(m).故答案為2+2.【考點】本題主要考查勾股定理的應(yīng)用,解此題的關(guān)鍵在于準確理解題中地毯的長度為水平與豎直的線段的和.2、(3+3).【解析】【分析】要求螞蟻爬行的最短距離,需將圖②的幾何體表面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】如圖所示:△BCD是等腰直角三角形,△ACD是等邊三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴從頂點A爬行到頂點B的最短距離為(3+3)cm.故答案為(3+3).【考點】本題考查了平面展開-最短路徑問題,關(guān)鍵是把圖②的幾何體表面展開成平面圖形,根據(jù)等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)解題.3、【解析】【分析】根據(jù)折疊的性質(zhì)可得,,從而得出相應(yīng)角相等,再根據(jù)角之間的關(guān)系得出,從而得出為等腰直角三角形,再根據(jù)勾股定理求出的長度,利用三角形的面積公式求出的長度,再求出、的長度,最后求出的長度.【詳解】解:∵邊AC沿CE翻折,使點A落在AB上的點D處,∴,∴,,,∵邊BC沿CF翻折,使點B落在CD的延長線上的點處,∴,∴,∵,∴,∴為等腰直角三角形,∴,∵,,,∴,∵,∴,∴,∴.故答案為:.【考點】本題主要考查了圖形的翻折變化,勾股定理的運用,等腰直角三角形的判定,根據(jù)折疊的性質(zhì)求得相應(yīng)的角是解答本題的關(guān)鍵.4、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關(guān)鍵.5、90°##90度【解析】【分析】根據(jù)三角形面積公式求出AC=4,根據(jù)勾股定理逆定理即可求出∠ACB=90°.【詳解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案為:90°【考點】本題考查了勾股定理逆定理和三角形的面積應(yīng)用,熟練掌握勾股定理逆定理是解題關(guān)鍵.6、【解析】【分析】過作,為垂足,通過已知條件可以求得,,從而求得,再根據(jù)直角三角形的性質(zhì),即可求解.【詳解】解:過作,為垂足,,又,,又,,在與中,,,,∴,在中,,設(shè),則由勾股定理可得即解得故答案為.【考點】此題主要考查了三角形全等的證明方法和直角三角形的有關(guān)性質(zhì),利用已知條件合理構(gòu)造直角三角形是解決本題的關(guān)鍵.7、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.8、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點】此題考查了勾股定理的實際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.三、解答題1、(1)OAn2=n;Sn=;(2)OA10=;(3)說明他是第20個三角形;(4).【解析】【分析】(1)利用已知可得OAn2,注意觀察數(shù)據(jù)的變化,(2)結(jié)合(1)中規(guī)律即可求出OA102的值即可求出,(3)若一個三角形的面積是,利用前面公式可以得到它是第幾個三角形,(4)根據(jù)題意列出式子即可求出.【詳解】(1)結(jié)合已知數(shù)據(jù),可得:OAn2=n;Sn=;(2)∵OAn2=n,∴OA10=;(3)若一個三角形的面積是,根據(jù):Sn==,∴=2=,∴說明他是第20個三角形,(4)S12+S22+S32+…+S102,=,=,=,=.故答案為(1)OAn2=n;Sn=;(2)OA10=;(3)說明他是第20個三角形;(4).【考點】本題考查規(guī)律型:圖形的變化類,勾股定理的應(yīng)用.2、(1)米;(2)見解析,米【解析】【分析】(1)如圖,連接AB,根據(jù)勾股定理即可得到結(jié)論;(2)如圖,作點A關(guān)于直線MN的對稱點A',連接A'B交MN于點P.驛站到小明家和到小紅家距離和的最小值即為A'B,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:(1)如圖,連接AB,由題意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如圖,作點A關(guān)于直線MN的對稱點A',連接A'B交MN于點P.驛站到小明家和到小紅家距離和的最小值即為A'B,由題意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即從驛站到小明家和到小紅家距離和的最小值為1500米.【考點】本題考查軸對稱-最短問題,勾股定理,題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題.3、【初步運用】(1)5:9;(2)28;(3)24;(4);【遷移運用】a2+b2﹣ab=c2,證明見解析【解析】【分析】初步運用:(1)如圖1,求出小正方形的面積,大正方形的面積即可;(2)根據(jù)空白部分的面積=小正方形的面積﹣2個直角三角形的面積計算即可;(3)可設(shè)AC=x,根據(jù)勾股定理列出方程可求x,再根據(jù)直角三角形面積公式計算即可求解;(4)根據(jù)圖形的特征得出四邊形MNKT的面積設(shè)為x,將其余八個全等的三角形面積一個設(shè)為y,從而用x,y表示出S1,S2,S3,得出答案即可.遷移運用:根據(jù)大正三角形面積=三個全等三角形面積+小正三角形面積,構(gòu)建關(guān)系式即可.【詳解】解:【初步運用】(1)由題意:b=2a,c=,∴小正方形面積:大正方形面積=5a2:9a2=5:9,故答案為:5:9;(2)空白部分的面積為=52﹣2××4×6=28,故答案為:28;(3)24÷4=6,設(shè)AC=x,依題意有:(x+3)2+32=(6﹣x)2,解得x=1,∴面積為:×(3+1)×3×4=×4×3×4=24,故該飛鏢狀圖案的面積是24;(4)將四邊形MTKN的面積設(shè)為x,將其余八個全等的三角形面積一個設(shè)為y,∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=40,∴S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=40,∴x+4y=,∴S2=x+4y=,故答案為:;[遷移運用]結(jié)論:a2+b2﹣ab=c2.理由:由題意:大正三角形面積=三個全等三角形面積+小正三角形面積,可得:(a+b)×k(a+b)=3××b×ka+×c×ck,∴(a+b)2=3ab+c2,∴a2+b2﹣ab=c2.【考點】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論