版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川綿陽南山中學雙語學校7年級數(shù)學下冊第四章三角形單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個數(shù)是()A.1 B.2 C.3 D.42、下列四個圖形中,BE不是△ABC的高線的圖是()A. B.C. D.3、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°4、以下列各組線段為邊,能組成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm5、如圖,在中,已知點,,分別為,,的中點,且,則的面積是()A. B.1 C.5 D.6、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點,在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°7、如圖,在和中,,,,,連接,交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個8、一個三角形的兩邊長分別是3和7,且第三邊長為整數(shù),這樣的三角形周長最大的值為()A. B. C. D.9、如圖,D為∠BAC的外角平分線上一點,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結論有()A.1個 B.2個 C.3個 D.4個10、小東要從下面四組木棒中選擇一組制作一個三角形作品,你認為他應該選()組.A.,, B.,, C.,, D.,,第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,與的頂點A、B、D在同一直線上,,,,延長分別交、于點F、G.若,,則______.2、已知,如圖,AB=AC,AD=AE,BE與CD相交于點P,則下列結論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對全等三角形;正確的是_____(請?zhí)顚懶蛱枺?、如圖,已知△ABC≌△DEF,∠B=30°,∠F=40°,則∠A的度數(shù)是______.4、如圖,在△ABC中,AD平分∠CAB,BD⊥AD,已知△ADC的面積為14,△ABD的面積為10,則△ABC的面積為______.5、如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為58,△ADC的面積為30,則△ABD的面積等于______.6、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.7、如圖,已知,,,則______°.8、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點P,則△ABC的面積為_____cm2.9、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當AC=6,BC=8,AB=10時,則△CEF的周長為_____.10、在新年聯(lián)歡會上,老師設計了“你說我畫”的游戲.游戲規(guī)則如下:甲同學需要根據(jù)乙同學提供的三個條件畫出形狀和大小都確定的三角形.已知乙同學說出的前兩個條件是“,”.現(xiàn)僅存下列三個條件:①;②;③.為了甲同學畫出形狀和大小都確定的,乙同學可以選擇的條件有:______.(填寫序號,寫出所有正確答案)三、解答題(6小題,每小題10分,共計60分)1、如圖,直角坐標系中,點B(a,0),點C(0,b),點A在第一象限.若a,b滿足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點,連接AF,OA,當點A在第一象限內(nèi)運動(AD不過點C)時,證明:∠OAF的大小不變;(3)如圖2,B′與B關于y軸對稱,M在線段BC上,N在CB′的延長線上,且BM=NB′,連接MN交x軸于點T,過T作TQ⊥MN交y軸于點Q,當t=2時,求點Q的坐標.2、如圖,E為AB上一點,BD∥AC,AB=BD,AC=BE.求證:BC=DE.3、如圖,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求證:AF=DE.4、如圖,在中,,,點D是內(nèi)一點,連接CD,過點C作且,連接AD,BE.求證:.5、證明“全等三角形的對應角的平分線相等”.要求:將已有圖形根據(jù)題意補充完整,并據(jù)此寫出己知、求證和證明過程.6、如圖,在和中,,,,.連接,交于點,連接.(Ⅰ)求證:;(Ⅱ)求的大?。唬á螅┣笞C:-參考答案-一、單選題1、D【分析】首先證明△ABE≌△BCF,再利用角的關系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點睛】本題主要是考查了三角形全等、正方形的性質,熟練地綜合應用全等三角形以及正方形的性質,證明邊相等和角相等,是解決本題的關鍵.2、C【分析】利用三角形的高的定義可得答案.【詳解】解:BE不是△ABC的高線的圖是C,故選:C.【點睛】此題主要考查了三角形的高,關鍵是掌握從三角形的一個頂點向底邊作垂線,垂足與頂點之間的線段叫做三角形的高.3、B【分析】已知,得到,根據(jù)外角性質,得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點睛】本題主要考查了三角形外角定理的應用,準確分析計算是解題的關鍵.4、C【分析】根據(jù)三角形三邊關系求解即可.【詳解】解:A、∵,∴3cm,3cm,6cm不能組成三角形,故選項錯誤,不符合題意;B、∵,∴2cm,5cm,8cm不能組成三角形,故選項錯誤,不符合題意;C、∵,∴25cm,24cm,7cm能組成三角形,故選項正確,符合題意;D、∵,∴1cm,2cm,3cm不能組成三角形,故選項錯誤,不符合題意.故選:C.【點睛】此題考查了三角形三邊關系,解題的關鍵是熟練掌握三角形三邊關系.三角形兩邊之和大于第三邊,兩邊之差小于第三邊.5、B【分析】根據(jù)三角形面積公式由點為的中點得到,同理得到,則,然后再由點為的中點得到.【詳解】解:點為的中點,,點為的中點,,,點為的中點,.故選:.【點睛】本題考查了三角形的中線與面積的關系,解題的關鍵是掌握是三角形的中線把三角形的面積平均分成兩半.6、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點睛】本題考查全等三角形的判定與性質,掌握全等三角形的判定定理與性質是解題的關鍵.7、C【分析】由全等三角形的判定及性質對每個結論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設平分則∵∴即由④知又∵為對頂角∴∴∴∴在和中,∴即AB=AC又∵故假設不符,故不平分故③錯誤.綜上所述①②④正確,共有3個正確.故選:C.【點睛】本題考查了全等三角形的判定及性質,靈活的選擇全等三角形的判定的方法是解題的關鍵,從判定兩個三角形全等的方法可知,要判定兩個三角形全等,需要知道這兩個三角形分別有三個元素(其中至少一個元素是邊)對應相等,這樣就可以利用題目中的已知邊角迅速、準確地確定要補充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個三角形全等的思路.8、C【分析】先根據(jù)三角形的三邊關系定理求得第三邊的取值范圍;再根據(jù)第三邊是整數(shù),從而求得周長最大時,對應的第三邊的長.【詳解】解:設第三邊為a,根據(jù)三角形的三邊關系,得:7-3<a<3+7,即4<a<10,∵a為整數(shù),∴a的最大值為9,則三角形的最大周長為9+3+7=19.故選:C.【點睛】本題考查了三角形的三邊關系:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.9、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點睛】本題主要考查了全等三角形的判定及性質,外角的性質等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關鍵.10、D【分析】利用三角形的三邊關系,即可求解.【詳解】解:根據(jù)三角形的三邊關系,得:A、,不能組成三角形,不符合題意;B、,不能夠組成三角形,不符合題意;C、,不能夠組成三角形,不符合題意;D、,能夠組成三角形,符合題意.故選:D【點睛】本題主要考查了三角形的三邊關系,熟練掌握三角形的兩邊之和大于第三邊,兩邊只差小于第三邊是解題的關鍵.二、填空題1、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點睛】本題考查了平行線的性質,全等三角形的判定與性質,以及三角形外角的性質,熟練掌握三角形的外角等于不相鄰的兩個內(nèi)角和是解答本題的關鍵.2、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當AP=PB時,∠PAB=∠B,當AP≠PB時,∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對全等三角形,故④正確故答案為:①②④【點睛】本題考查三角形全等判定與性質,掌握全等三角形的判定方法與性質是解題關鍵.3、110°【分析】先根據(jù)全等三角形的性質得到∠C=∠F=40°,然后根據(jù)三角形內(nèi)角和求∠F的度數(shù).【詳解】解:∵△ABC≌△DEF,∴∠C=∠F=40°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣30°=110°.故答案為:110°.【點睛】本題考查了全等三角形的性質:全等三角形的對應邊相等;全等三角形的對應角相等.4、28【分析】延長BD交AC于點E,可得△ABD≌△AED,則△ABD與△AED的面積相等,點D是BE的中點,從而△CED與△CBD的面積相等,且可求得△CED的面積,進而求得結果.【詳解】延長BD交AC于點E,如圖所示∵BD⊥AD∴∠ADB=∠ADE=90°∵AD平分∠CAB∴∠BAD=∠CAD∵AD=AD∴△ABD≌△AED(ASA)∴△ABD與△AED的面積相等,BD=ED∴點D是BE的中點∴△CED與△CBD的面積相等,且△CED的面積等于△ADC的面積與△ABD的面積的差,即為14-10=4∴△CBD的面積為4∴△ABC的面積=14+10+4=28故答案為:28【點睛】本題考查了全等三角形的判定與性質,三角形一邊上的中線平分此三角形的面積等知識,關鍵是構造輔助線并證明△ABD≌△AED.5、28【分析】延長交于,由證明,得出,得出,進而得出,即可得出結果.【詳解】如圖所示,延長交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:28.【點睛】此題考查全等三角形的判定與性質,三角形面積的計算,證明三角形全等得出是解題關鍵.6、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關鍵是熟知全等三角形的判定定理.7、59【分析】如圖,過作證明證明再利用三角形的外角的性質求解從而可得答案.【詳解】解:如圖,過作,而,,故答案為:【點睛】本題考查的是平行線的性質,平行公理的應用,三角形的外角的性質,過作再證明是解本題的關鍵.8、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點睛】本題考查了全等三角形的性質和判定,三角形的面積的應用,注意:等底等高的三角形的面積相等.9、4【分析】根據(jù)題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進而利用全等三角形的性質證明EF=EM+EN,即可得出結論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質定理,正方形的判定,全等三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問.10、②【分析】根據(jù)兩邊及其夾角對應相等的兩個三角形全等,即可求解.【詳解】解:①若選,是邊邊角,不能得到形狀和大小都確定的;②若選,是邊角邊,能得到形狀和大小都確定的;③若選,是邊邊角,不能得到形狀和大小都確定的;所以乙同學可以選擇的條件有②.故答案為:②【點睛】本題主要考查了全等三角形的判定,熟練掌握兩邊及其夾角對應相等的兩個三角形全等是解題的關鍵.三、解答題1、(1)見解析(2)見解析(3)點坐標為(,).【分析】(1)利用絕對值以及平方的非負性求出B、C的坐標,利用坐標表示邊長,即可證明結論.(2)延長至點,使,連接、,利用條件先證明,再根據(jù)全等三角形性質,進一步證明,最后綜合條件得到為等腰直角三角形,進而得到∠OAF為,是個定值,即可證得結論成立.(3)先連接、、、,過作交軸于,利用平行關系和邊相等證明,然后通過全等三角形性質進一步證明,再根據(jù)角與角之間的關系,求出,得到為等腰直角三角形,最后利用等腰三角形的性質,即可求出點坐標.【詳解】(1)證明:(a?t)2+|b?t|=0(t>0),,即,點B坐標為(a,0),點C坐標為(0,b),,故結論得證.(2)解:如圖所示:延長至點,使,連接、,是的中點,,在和中,,,,,,,,,,,,,,,在與中,.,,,,為等腰直角三角形.,故∠OAF的大小不變.(3)解:連接、、、,過作交軸于.如下圖所示:和關于軸對稱,在軸上.,,,,.,,,,在和中,.,又,,垂直平分,,在和中,.,.,故.,.為等腰直角三角形..故點坐標為(,).【點睛】本題主要是考查了對稱點的坐標關系以及利用坐標求解幾何圖形,熟練掌握垂直平分線、平行線以及等腰三角形、全等三角形的判定和性質,是解決本題的關系.2、見解析【分析】根據(jù)平行線的性質可得,利用全等三角形的判定定理即可證明.【詳解】證明:∵,∴.在和中,,∴,∴.【點睛】題目主要考查全等三角形的判定定理和平行線的性質,熟練掌握全等三角形的判定定理是解題關鍵.3、見解析【分析】由題意可得∠B=∠C=90°,BF=CE,由“AAS”可證△ABF≌△DCE,可得AF=DE.【詳解】證明:∵AB⊥CB,DC⊥CB,∴∠B=∠C=90°,∵BE=CF,∴BF=CE,且∠A=∠D,∠B=∠C=90°,∴△ABF≌△DCE(AAS),∴AF=DE,【點睛】本題考查了全等三角形的判定和性質,熟練運用全等三角形的判定是本題的關鍵.4、證明見解析.【分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 21459.1-2025真菌農(nóng)藥母藥產(chǎn)品標準編寫規(guī)范
- GB/T 46808-2025物流企業(yè)溫室氣體排放數(shù)據(jù)的數(shù)字化管理指南
- GB/T 33018-2025炭素企業(yè)節(jié)能技術規(guī)范
- 2026年云南省麗江地區(qū)單招職業(yè)傾向性考試題庫及參考答案詳解1套
- 2026年懷化師范高等專科學校單招職業(yè)適應性考試題庫及完整答案詳解1套
- 2026年濰坊環(huán)境工程職業(yè)學院單招職業(yè)技能考試題庫及參考答案詳解1套
- 2026年河北省保定市單招職業(yè)傾向性測試題庫及答案詳解1套
- 2026年浙江警官職業(yè)學院單招職業(yè)適應性考試題庫及參考答案詳解1套
- 2026年吉林科技職業(yè)技術學院單招職業(yè)適應性測試題庫含答案詳解
- 2026年哈爾濱幼兒師范高等??茖W校單招職業(yè)技能測試題庫含答案詳解
- 8m深基坑土方開挖施工方案
- 2025中央廣播電視總臺招聘144人筆試歷年題庫附答案解析
- 2026年瓦工職業(yè)技能鑒定考試題庫及答案
- 2025年云南省人民檢察院聘用制書記員招聘(22人)筆試考試參考題庫及答案解析
- 初一上冊體育教案(2025-2026學年)
- 一般固廢合同范本
- 胃腸外科圍手術期護理要點
- 竣工資料歸檔與管理流程
- 購車合伙協(xié)議書模板
- 二手摩托車買賣合同范本
- 【MOOC】數(shù)據(jù)結構與算法-北京大學 中國大學慕課MOOC答案
評論
0/150
提交評論