版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來的3倍C.面積擴(kuò)大為原來的9倍 D.面積縮小為原來的2、已知菱形ABCD的對(duì)角線交于原點(diǎn)O,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,則點(diǎn)D的坐標(biāo)是()A. B. C. D.3、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)到點(diǎn)D落在AB邊上,此時(shí)得到△EDC,斜邊DE交AC邊于點(diǎn)F,則圖中陰影部分的面積為()A.3 B.1 C. D.4、下列事件為必然事件的是()A.明天要下雨B.a(chǎn)是實(shí)數(shù),|a|≥0C.﹣3<﹣4D.打開電視機(jī),正在播放新聞5、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm6、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長(zhǎng)為()A.3 B. C. D.7、下面四個(gè)立體圖形中,從正面看是三角形的是()A. B. C. D.8、如圖是一個(gè)含有3個(gè)正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個(gè)圓形的金屬框上,使A,G,H三點(diǎn)剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在⊙O中,弦AB⊥OC于E點(diǎn),C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.2、已知60°的圓心角所對(duì)的弧長(zhǎng)是3.14厘米,則它所在圓的周長(zhǎng)是______厘米.3、從,0,1,2這四個(gè)數(shù)中任取一個(gè)數(shù),作為關(guān)于x的方程中a的值,則該方程有實(shí)數(shù)根的概率為_________.4、在一個(gè)暗箱里放入除顏色外其它都相同的1個(gè)紅球和11個(gè)黃球,攪拌均勻后隨機(jī)任取一球,取到紅球的概率是_____.5、某射擊運(yùn)動(dòng)員在同一條件下的射擊成績(jī)記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過計(jì)算頻率,估計(jì)這名運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點(diǎn)后一位).6、林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數(shù)據(jù):移植的棵數(shù)n10001500250040008000150002000030000成活的棵數(shù)m8651356222035007056131701758026430成活的頻率0.8650.9040.8880.8750.8820.8780.8790.881估計(jì)該種幼樹在此條件下移植成活的概率為_______.7、如圖,在中,,是內(nèi)的一個(gè)動(dòng)點(diǎn),滿足.若,,則長(zhǎng)的最小值為_______.三、解答題(7小題,每小題0分,共計(jì)0分)1、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個(gè)問題:如圖1,在平面直角坐標(biāo)系xOy中,OA經(jīng)過坐標(biāo)原點(diǎn)O,并與兩坐標(biāo)軸分別交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為,點(diǎn)D在上,且,求OA的半徑和圓心A的坐標(biāo).元元的做法如下,請(qǐng)你幫忙補(bǔ)全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標(biāo)為(④)的半徑為⑤2、如圖1,在中,,,點(diǎn)D為AB邊上一點(diǎn).(1)若,則______;(2)如圖2,將線段CD繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連接AE,求證:;(3)如圖3,過點(diǎn)A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.3、下面是“過圓外一點(diǎn)作圓的切線”的尺規(guī)作圖過程.已知:⊙O和⊙O外一點(diǎn)P.求作:過點(diǎn)P的⊙O的切線.作法:如圖,(1)連接OP;(2)分別以點(diǎn)O和點(diǎn)P為圓心,大于的長(zhǎng)半徑作弧,兩弧相交于M,N兩點(diǎn);(3)作直線MN,交OP于點(diǎn)C;(4)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A,B兩點(diǎn);(5)作直線PA,PB.直線PA,PB即為所求作⊙O的切線完成如下證明:證明:連接OA,OB,∵OP是⊙C直徑,點(diǎn)A在⊙C上∴∠OAP=90°(___________)(填推理的依據(jù)).∴OA⊥AP.又∵點(diǎn)A在⊙O上,∴直線PA是⊙O的切線(___________)(填推理的依據(jù)).同理可證直線PB是⊙O的切線.4、在平面直角坐標(biāo)系xOy中,給出如下定義:若點(diǎn)P在圖形M上,點(diǎn)Q在圖形N上,稱線段PQ長(zhǎng)度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點(diǎn),規(guī)定d(M,N)=0.已知:如圖,點(diǎn)A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動(dòng)點(diǎn),⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.5、在同樣的條件下對(duì)某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計(jì)發(fā)芽種子數(shù),獲得如下頻數(shù)表.實(shí)驗(yàn)種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計(jì)該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計(jì)約需麥種多少千克(精確到1kg)?6、如圖1,點(diǎn)O為直線AB上一點(diǎn),將兩個(gè)含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得邊OP在的內(nèi)部且平分,此時(shí)三角板OPQ旋轉(zhuǎn)的角度為______度;(2)三角板OPQ在繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)時(shí),若OP在的內(nèi)部.試探究與之間滿足什么等量關(guān)系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點(diǎn)O以每秒2°的速度按順時(shí)針方向旋轉(zhuǎn),同時(shí)將三角板OPQ繞點(diǎn)O以每秒3°的速度按逆時(shí)針方向旋轉(zhuǎn),將射線OB繞點(diǎn)O以每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)后的射線OB記為OE,射線OC平分,射線OD平分,當(dāng)射線OC、OD重合時(shí),射線OE改為繞點(diǎn)O以原速按順時(shí)針方向旋轉(zhuǎn),在OC與OD第二次相遇前,當(dāng)時(shí),直接寫出旋轉(zhuǎn)時(shí)間t的值.7、如圖,在平面直角坐標(biāo)系中,經(jīng)過原點(diǎn),且與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)在第二象限上,且,則__.-參考答案-一、單選題1、A【分析】設(shè)原來扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來扇形的半徑為r,圓心角為n,∴原來扇形的面積為,∵扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.2、A【分析】根據(jù)菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,則點(diǎn)與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,根據(jù)中心對(duì)稱的點(diǎn)的坐標(biāo)特征進(jìn)行求解即可【詳解】解:∵菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,∴與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,點(diǎn)B的坐標(biāo)為,點(diǎn)D的坐標(biāo)是故選A【點(diǎn)睛】本題考查了菱形的性質(zhì),求關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.3、D【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進(jìn)而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點(diǎn),,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點(diǎn)睛】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.4、B【分析】根據(jù)事情發(fā)生的可能性大小進(jìn)行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會(huì)發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會(huì)發(fā)生的事件稱為不可能事件;隨機(jī)事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機(jī)事件.【詳解】A.明天要下雨,是隨機(jī)事件,不符合題意;B.a是實(shí)數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機(jī),正在播放新聞,是隨機(jī)事件,不符合題意故選B【點(diǎn)睛】本題考查了必然事件,隨機(jī)事件,不可能事件,實(shí)數(shù)的性質(zhì),有理數(shù)大小比較,掌握相關(guān)知識(shí)是解題的關(guān)鍵.5、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點(diǎn)睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.6、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長(zhǎng)交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點(diǎn)睛】本題考查了圓周角性質(zhì),利用同弧所對(duì)圓周角性質(zhì)與直徑所對(duì)圓周角性質(zhì),30°角所對(duì)直角三角形性質(zhì),掌握?qǐng)A周角性質(zhì),利用同弧所對(duì)圓周角性質(zhì)與直徑所對(duì)圓周角性質(zhì),30°角所對(duì)直角三角形性質(zhì)是解題的關(guān)鍵.7、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長(zhǎng)方形,不符合題意.故選:C.【點(diǎn)睛】本題考查了三視圖的知識(shí),主視圖是從物體的正面看得到的視圖.8、A【分析】如圖,記過A,G,H三點(diǎn)的圓為則是,的垂直平分線的交點(diǎn),記的交點(diǎn)為的交點(diǎn)為延長(zhǎng)交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:再設(shè)利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點(diǎn)的圓為則是,的垂直平分線的交點(diǎn),記的交點(diǎn)為的交點(diǎn)為延長(zhǎng)交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:四邊形為正方形,則設(shè)而AB=2,CD=3,EF=5,結(jié)合正方形的性質(zhì)可得:而又而解得:故選A【點(diǎn)睛】本題考查的是正方形的性質(zhì),三角形外接圓圓心的確定,圓的基本性質(zhì),勾股定理的應(yīng)用,二次根式的化簡(jiǎn),確定過A,G,H三點(diǎn)的圓的圓心是解本題的關(guān)鍵.二、填空題1、5【分析】設(shè)⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設(shè)⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長(zhǎng)為5,故答案為:5.【點(diǎn)睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。部疾榱斯垂啥ɡ恚?、18.84【分析】先根據(jù)弧長(zhǎng)公式求得πr,然后再運(yùn)用圓的周長(zhǎng)公式解答即可.【詳解】解:設(shè)圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長(zhǎng)為(厘米),故答案為:.【點(diǎn)睛】本題主要考查了弧長(zhǎng)公式、圓的周長(zhǎng)公式等知識(shí)點(diǎn),牢記弧長(zhǎng)公式是解答本題的關(guān)鍵.3、【分析】根據(jù)一元二次方程的定義,可得,根據(jù)一元二次方程的判別式的意義得到,可得,然后根據(jù)概率公式求解.【詳解】解:∵當(dāng)且,一元二次方程有實(shí)數(shù)根∴且從,0,1,2這四個(gè)數(shù)中任取一個(gè)數(shù),符合條件的結(jié)果有所得方程有實(shí)數(shù)根的概率為故答案為:【點(diǎn)睛】本題考查了列舉法求概率,一元二次方程的定義,一元二次方程根的判別式,掌握以上知識(shí)是解題的關(guān)鍵.4、【分析】由題意可知,共有12個(gè)球,取到每個(gè)球的機(jī)會(huì)均等,根據(jù)概率公式解題.【詳解】解:P(紅球)=故答案為:【點(diǎn)睛】本題考查簡(jiǎn)單事件的概率,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.5、0.8【分析】重復(fù)試驗(yàn)次數(shù)越多,其頻率越能估計(jì)概率,求出射擊1000次時(shí)的頻率即可.【詳解】解:由題意可知射擊1000次時(shí),運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的頻率為∴用頻率估計(jì)概率為0.801,保留小數(shù)點(diǎn)后一位可知概率值為0.8故答案為:0.8.【點(diǎn)睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計(jì)概率時(shí)要在重復(fù)試驗(yàn)次數(shù)盡可能多的情況下.6、0.880【分析】大量重復(fù)實(shí)驗(yàn)的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時(shí),可以用這一穩(wěn)定值估計(jì)事件發(fā)生的概率,據(jù)此可解.【詳解】解:大量重復(fù)實(shí)驗(yàn)的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時(shí),可以用這一穩(wěn)定值估計(jì)事件發(fā)生的概率,從上表可以看出,頻率成活的頻率,即穩(wěn)定于0.880左右,∴估計(jì)這種幼樹移植成活率的概率約為0.88.故答案為:0.880.【點(diǎn)睛】此題主要考查了利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.7、2【分析】取AC中點(diǎn)O,由勾股定理的逆定理可知∠ADC=90°,則點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點(diǎn)O,∵,即,∴∠ADC=90°,∴點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點(diǎn)睛】本題主要考查了一點(diǎn)到圓上一點(diǎn)的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點(diǎn)D的運(yùn)動(dòng)軌跡.三、解答題1、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據(jù)垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據(jù)是垂徑定理)∵,∴(依據(jù)是圓周角定理).∵,.∴BC是的直徑(依據(jù)是圓周角定理).∴,∵,∴A的坐標(biāo)為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,圓周角定理,(1,),2.【點(diǎn)睛】此題考查了圓的知識(shí),垂徑定理、圓周角定理,熟記各定理知識(shí)并綜合應(yīng)用是解題的關(guān)鍵.2、(1)5(2)證明見解析(3)【分析】(1)過C作CM⊥AB于M,根據(jù)等腰三角形的性質(zhì)求出CM和DM,再根據(jù)勾股定理計(jì)算即可;(2)連BE,先證明,即可得到直角三角形ABE,利用勾股定理證明即可;(3)取AC中點(diǎn)N,連接FN、BN,根據(jù)三角形BFN中三邊關(guān)系判斷即可.(1)過C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)連接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中點(diǎn)N,連接FN、BN,∵,,∴∵AF垂直CD∴∵AC中點(diǎn)N,∴∴∵三角形BFN中∴∴當(dāng)B、F、N三點(diǎn)共線時(shí)BF最小,最小值為.【點(diǎn)睛】本題考查等腰直角三角形的常用輔助線以及直角三角形斜邊上的中線,解題的關(guān)鍵是根據(jù)等腰直角三角形作斜邊垂線或者構(gòu)造“手拉手模型”.3、直徑所對(duì)的圓周角是直角經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線【分析】連接OA,OB,根據(jù)圓周角定理可知∠OAP=90°,再依據(jù)切線的判定證明結(jié)論;【詳解】證明:連接OA,OB,∵OP是⊙C直徑,點(diǎn)A在⊙C上,∴∠OAP=90°(直徑所對(duì)的圓周角是直角),∴OA⊥AP.又∵點(diǎn)A在⊙O上,∴直線PA是⊙O的切線(經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線),同理可證直線PB是⊙O的切線,故答案為:直徑所對(duì)的圓周角是直角;經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.4、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點(diǎn)O作OD⊥AB于點(diǎn)D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當(dāng)⊙O的半徑等于OD時(shí)最小,當(dāng)⊙O的半徑等于OB時(shí)最大,即可求解;(3)過點(diǎn)C作CN⊥AB于點(diǎn)N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當(dāng)點(diǎn)C在點(diǎn)A的右側(cè)時(shí),當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),當(dāng)點(diǎn)C在點(diǎn)A的左側(cè)時(shí),即可求解.【詳解】解:(1)∵⊙O的半徑為2,A(,0),B(0,).∴,∴點(diǎn)A在⊙O上,點(diǎn)B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)過點(diǎn)O作OD⊥AB于點(diǎn)D,∵點(diǎn)A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,線段AB)=0,∴當(dāng)⊙O的半徑等于OD時(shí)最小,當(dāng)⊙O的半徑等于OB時(shí)最大,∴r的取值范圍是,(3)如圖,過點(diǎn)C作CN⊥AB于點(diǎn)N,∵點(diǎn)A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),當(dāng)點(diǎn)C在點(diǎn)A的右側(cè)時(shí),,∴,∴,∵d(⊙C,線段AB)<1,⊙C的半徑為1,∴,解得:,當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),,此時(shí)d(⊙C,線段AB)=0,當(dāng)點(diǎn)C在點(diǎn)A的左側(cè)時(shí),,∴,∴,解得:,∴.【點(diǎn)睛】本題主要考查了點(diǎn)與圓的位置關(guān)系,點(diǎn)與直線的位置關(guān)系,理解新定義,熟練掌握點(diǎn)與圓的位置關(guān)系,點(diǎn)與直線的位置關(guān)系是解題的關(guān)鍵.5、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計(jì)麥種的發(fā)芽率,大數(shù)次實(shí)驗(yàn),當(dāng)頻率固定到一個(gè)穩(wěn)定值時(shí),可根據(jù)頻率公式=頻數(shù)÷總數(shù)計(jì)算即可;(2)設(shè)約需麥種x千克,根據(jù)x千克轉(zhuǎn)化為克×1000,再轉(zhuǎn)為顆粒÷50×1000,根據(jù)發(fā)芽率再×95%,根據(jù)芽轉(zhuǎn)苗再×80%,等于三公頃地需要的苗總數(shù),例方程x×1000÷50×1000×95%×80%=4000000×3,解方程即可(1)解:根據(jù)實(shí)驗(yàn)數(shù)量變大,發(fā)芽數(shù)也在增大,2850÷3000×100%=95%,故該麥種的發(fā)芽概率約為95%;(2)解:設(shè)約需麥種x千克,x×1000÷50×1000×95%×80%=4000000×3,化簡(jiǎn)得15200x=12000000,解得x=789,答:約需麥種790千克【點(diǎn)睛】本題考查用頻率估計(jì)發(fā)芽率,一元一次方程解應(yīng)用題,掌握用頻率估計(jì)發(fā)芽率,一元一次方程解應(yīng)用題的方法與步驟是解題關(guān)鍵.6、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據(jù)OP平分得到∠PON,然后求出∠BOP即可;(2)先根據(jù)題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉(zhuǎn)前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時(shí)間,再設(shè)在OC與OD第二次相遇前,當(dāng)時(shí),需要旋轉(zhuǎn)時(shí)間為t,再分OE在OC的左側(cè)和O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 腸癌手術(shù)患者的心理護(hù)理與支持
- 2025年辦公室地面環(huán)氧地坪協(xié)議
- 《吸嗅類(合香制品)保健用品生產(chǎn)技術(shù)規(guī)范》標(biāo)準(zhǔn) 征求意見稿
- 太陽能建筑一體化原理與應(yīng) 課件 第3章 太陽能的吸收與透射
- 城市歷史文化保護(hù)傳承
- 2025年智慧養(yǎng)老院監(jiān)護(hù)技術(shù) AI陪護(hù)機(jī)器人24小時(shí)應(yīng)用
- 2026 年中職咖啡科學(xué)與工程(咖啡基礎(chǔ))試題及答案
- 小升初蘇教版試題及答案
- 基于量子計(jì)算的JavaScript框架探索
- 2025年海南省公需課學(xué)習(xí)-全民健身計(jì)劃實(shí)施方案716
- 2025中央廣播電視總臺(tái)招聘144人筆試歷年題庫(kù)附答案解析
- 2026年瓦工職業(yè)技能鑒定考試題庫(kù)及答案
- 2025年云南省人民檢察院聘用制書記員招聘(22人)筆試考試參考題庫(kù)及答案解析
- 胃腸外科圍手術(shù)期護(hù)理要點(diǎn)
- MOOC 理解馬克思-南京大學(xué) 中國(guó)大學(xué)慕課答案
- 《荷塘月色》《故都的秋》比較閱讀-統(tǒng)編版高中語文必修上冊(cè)
- 中央電大護(hù)理專業(yè)本科通科實(shí)習(xí)出科考核病歷
- 衛(wèi)生院基本公共衛(wèi)生服務(wù)獎(jiǎng)懲制度
- 氣動(dòng)沖床設(shè)備日常點(diǎn)檢標(biāo)準(zhǔn)作業(yè)指導(dǎo)書
- β-丙氨酸補(bǔ)充對(duì)運(yùn)動(dòng)能力的影響
- 南昌工程學(xué)院水電站課程設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論