版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在和中,點,,,在同一直線上,,,只添加一個條件,能判定的是(
)A. B. C. D.2、下列各組的兩個圖形屬于全等圖形的是(
)A. B. C. D.3、如圖,已知在四邊形中,,平分,,,,則四邊形的面積是(
)A.24 B.30 C.36 D.424、如圖,OB平分∠AOC,D、E、F分別是射線OA、射線OB、射線OC上的點,D、E、F與O點都不重合,連接ED、EF若添加下列條件中的某一個.就能使DOE△FOE,你認為要添加的那個條件是(
)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE5、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結(jié)論有(
)個A.2 B.3 C.4 D.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,中,以點O為圓心,任意長為半徑作弧,交于點M,交于點N,分別以點M,N為圓心,以大于的長為半徑作弧,兩弧交于點C,作射線,過點C作于點D.交于點E,若,則的度數(shù)為_______________.2、如圖,在中,,AD是的角平分線,過點D作,若,則______.3、如圖,四邊形ABCD,連接BD,AB⊥AD,CE⊥BD,AB=CE,BD=CD.若AD=5,CD=7,則BE=________.4、如圖,點B、C、E三點在同一直線上,且AB=AD,AC=AE,BC=DE,若,則∠3=______°.5、如圖,在中,D是上的一點,,平分,交于點E,連接,若,,則_______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC中,AB⊥AC,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于點E;(1)若B、C在DE的同側(cè)(如圖1所示)求證:DE=BD+CE;(2)若B、C在DE的兩側(cè)(如圖2所示),其他條件不變,則DE,BD,CE具有怎樣的等量關(guān)系?寫出等量關(guān)系,不需證明.2、如圖,PA=PB,∠PAM+∠PBN=180°,求證:OP平分∠AOB.3、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大??;(2)若EF⊥AE交AC于F,求證:∠C=2∠FEC.4、如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求證:△BCE≌△DCF;(2)求證:AB+AD=2AE.5、如圖,在△ABC中,AB=BC,∠ABC=60°,線段AC與AD關(guān)于直線AP對稱,E是線段BD與直線AP的交點.(1)若∠DAE=15°,求證:△ABD是等腰直角三角形;(2)連CE,求證:BE=AE+CE.-參考答案-一、單選題1、B【解析】【分析】根據(jù)三角形全等的判定做出選擇即可.【詳解】A、,不能判斷,選項不符合題意;B、,利用SAS定理可以判斷,選項符合題意;C、,不能判斷,選項不符合題意;D、,不能判斷,選項不符合題意;故選:B.【考點】本題考查三角形全等的判定,根據(jù)SSS、SAS、ASA、AAS判斷三角形全等,找出三角形全等的條件是解答本題的關(guān)鍵.2、D【解析】【分析】根據(jù)全等圖形的定義,逐一判斷選項,即可.【詳解】解:A、兩個圖形不能完全重合,不是全等圖形,不符合題意,B.兩個圖形不能完全重合,不是全等圖形,符合題意,C.兩個圖形不能完全重合,不是全等圖形,不符合題意,D.兩個圖形能完全重合,是全等圖形,不符合題意,故選D.【考點】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個圖形,是全等圖形”是解題的關(guān)鍵.3、B【解析】【分析】過D作DE⊥AB交BA的延長線于E,根據(jù)角平分線的性質(zhì)得到DE=CD=4,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】如圖,過D作DE⊥AB交BA的延長線于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四邊形的面積故選B.【考點】本題考查了角平分線的性質(zhì),三角形的面積的計算,正確的作出輔助線是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)OB平分∠AOC得∠AOB=∠BOC,又因為OE是公共邊,根據(jù)全等三角形的判斷即可得出結(jié)果.【詳解】解:∵OB平分∠AOC∴∠AOB=∠BOC當(dāng)△DOE≌△FOE時,可得以下結(jié)論:OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.A答案中OD與OE不是△DOE≌△FOE的對應(yīng)邊,A不正確;B答案中OE與OF不是△DOE≌△FOE的對應(yīng)邊,B不正確;C答案中,∠ODE與∠OED不是△DOE≌△FOE的對應(yīng)角,C不正確;D答案中,若∠ODE=∠OFE,在△DOE和△FOE中,∴△DOE≌△FOE(AAS)∴D答案正確.故選:D.【考點】本題考查三角形全等的判斷,理解全等圖形中邊和角的對應(yīng)關(guān)系是解題的關(guān)鍵.5、B【解析】【分析】①正確.利用三角形內(nèi)角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯誤.利用反證法,假設(shè)成立,推出矛盾即可.④錯誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個顯然與條件矛盾,故③錯誤故選B.【考點】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理,三角形的面積等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.二、填空題1、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點】本題主要考查了角平分線的基本作圖,平行線的性質(zhì),三角形外角的性質(zhì),直角三角形的性質(zhì),根據(jù)題意求出是解題的關(guān)鍵.2、7【解析】【分析】先利用角平分線性質(zhì)證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點】本題主要考查了角平分線的性質(zhì),解題的關(guān)鍵是熟練掌握角平分線的性質(zhì).3、2【解析】【分析】根據(jù)HL證明,可得,根據(jù)即可求解.【詳解】解:AB⊥AD,CE⊥BD,,在與中,,,AD=5,CD=7,,BD=CD=7,故答案為:2【考點】本題考查了全等三角形的性質(zhì)與判定,掌握HL證明三角形全等是解題的關(guān)鍵.4、47【解析】【分析】根據(jù)“邊邊邊”證明,再根據(jù)全等三角形的性質(zhì)可得∠ABC=∠1,∠BAC=∠2,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角和求出∠3=∠1+∠2,然后求解即可.【詳解】解:在△ABC和△ADE中,,∴(SSS),∴∠ABC=∠1,∠BAC=∠2,∴∠3=∠ABC+∠BAC=∠1+∠2,∵,∴,∴.故答案為:47.【考點】本題主要考查了全等三角形的判定與性質(zhì)以及三角形的外角等于與它不相鄰的兩個內(nèi)角和的性質(zhì),熟練掌握三角形全等的判定方法是解題關(guān)鍵.5、55°【解析】【分析】根據(jù)SAS證明△ACE≌△DCE,根據(jù)全等三角形的性質(zhì)可得∠CDE=∠A=100°,再根據(jù)三角形外角的性質(zhì)可求∠BED.【詳解】解:∵CE平分∠ACB,∴∠ACE=∠DCE,在△ACE與△DCE中,,∴△ACE≌△DCE(SAS),∴∠CDE=∠A=100°,∵∠B=45°,∴∠BED=∠CDE-∠B=100°-45°=55°,故答案為:55°.【考點】本題考查了全等三角形的判定與性質(zhì),三角形外角的性質(zhì),關(guān)鍵是得到∠CDE=∠A=100°.三、解答題1、(1)見解析(2)DE=CE-BD【解析】【分析】(1)根據(jù)AAS證明△ADB≌△CEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出結(jié)論;(2)由條件可以得出∠ADB=∠CEA=90°,∠BAD=∠ACE,再由AB=AC就可以得出△ADB≌△CEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD.(1)∵AB⊥AC,BD⊥DE,CE⊥DE∴∠BAC=90°,∠ADB=∠AEC=90°∴∠ACE+∠CAE=90°,∠BAD+∠CAE=90°,∴∠BAD=∠ACE,在△ADC與△BEC中,∠ADB=∠AEC=90°,∠BAD=∠ACE,AB=AC,∴△ADB≌△CEA(AAS),∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)DE=CE-BD理由:∵BD⊥AD,CE⊥AD,∴∠ADB=∠CEA=90°.∵AB⊥AC,∴∴∠BAD+∠CAE=90°.∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE.在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AD=AE+ED,∴DE=AD-AE=CE-BD.【考點】本題考查了等腰直角三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,解答時證明三角形全等是解答本題的關(guān)鍵.2、詳見解析【解析】【分析】過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),根據(jù)等角的補角相等可得出∠PAE=∠PBF,結(jié)合∠AEP=∠BFP、PA=PB即可證出△APE≌△BPF(AAS),根據(jù)全等三角形的性質(zhì)可得出PE=PF,進而可證出OP平分∠AOB.【詳解】如圖,過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),則∠PEA=∠PFB=90°.又∵∠PAM+∠PBN=180°,∠PBF+∠PBN=180°,∴∠PAM=∠PBF,即∠PAE=∠PBF.在△PAE與△PBF中,,∴△PAE≌△PBF(AAS).∴PE=PF.又∵PE⊥OM,PF⊥ON,∴OP平分∠AOB.【考點】本題考查了全等三角形的判定與性質(zhì)以及角平分線的性質(zhì),利用全等三角形的判定定理AAS證出△APE≌△BPF是解題的關(guān)鍵.3、(1)17.5°;(2)證明過程見解析【解析】【分析】(1)首先計算出∠B,∠BAC的度數(shù),根據(jù)AE是∠BAC的角平分線可得∠EAC=37.5°,再根據(jù)Rt△ADC中直角三角形兩銳角互余可得∠DAC的度數(shù),進而可得答案;(2)過A作AD⊥BC于D,證明∠DAE=∠FEC,由三角形內(nèi)角和定理得到∠EAC=90°-∠C,進而可得∠DAE=∠DAC-∠EAC,利用等量代換可得∠DAE=∠C即可求解.【詳解】解:(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴在△ABC中,由內(nèi)角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,兩銳角互余,∴∠DAC=90°-35°=55°,∴∠DAE=55°-37.5°=17.5°,故答案為:17.5°;(2)過A點作AD⊥BC于D點,如下圖所示:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°-∠B-∠C)=(180°-3∠C)=90°-∠C,∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-∠C)=(90°-∠C)-(90°-∠C)=∠C,∴∠FEC=∠C,∴∠C=2∠FEC.【考點】此題主要考查了三角形內(nèi)角和定理,角平分線的定義,直角三角形中兩銳角互余等知識點,熟練掌握各圖形的性質(zhì)是解決本題的關(guān)鍵.4、詳見解析【解析】【分析】(1)由角平分線定義可證△BCE≌△DCF(HL);(2)先證Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【詳解】(1)證明:∵AC是角平分線,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【考點】本題考查了全等三角形的判定、性質(zhì)和角平分線定義,注意:全等三角形的對應(yīng)角相等,對應(yīng)邊相等,直角三角形全等的判定定理有SAS,ASA,AAS,SS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 丁苯橡膠裝置操作工崗前競爭分析考核試卷含答案
- 2025呼倫貝爾扎蘭屯市中小學(xué)教師競爭性比選62人備考題庫附答案
- 淀粉加工工崗前安全文明考核試卷含答案
- 玻璃鋼制品噴射工安全文化水平考核試卷含答案
- 電工合金熔煉及熱變形工安全風(fēng)險能力考核試卷含答案
- 地毯設(shè)計師崗前設(shè)備考核試卷含答案
- 炭素壓型工誠信道德模擬考核試卷含答案
- 玻纖制品后處理工崗前技術(shù)基礎(chǔ)考核試卷含答案
- 2024年黑龍江省特崗教師招聘真題匯編附答案
- 2024年豫章師范學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 環(huán)境監(jiān)測站電路安裝施工方案
- DB14∕T 1754-2018 保模一體板現(xiàn)澆混凝土復(fù)合保溫系統(tǒng)通.用技術(shù)條件
- JGJT46-2024《施工現(xiàn)場臨時用電安全技術(shù)標(biāo)準(zhǔn)》條文解讀
- 電梯安裝施工合同
- DBJ41-T 263-2022 城市房屋建筑和市政基礎(chǔ)設(shè)施工程及道路揚塵污染防治差異化評價標(biāo)準(zhǔn) 河南省工程建設(shè)標(biāo)準(zhǔn)(住建廳版)
- DL-T5024-2020電力工程地基處理技術(shù)規(guī)程
- 耐高溫鋁電解電容器項目計劃書
- 小學(xué)四年級語文上冊期末測試卷(可打印)
- 《肺癌的診斷與治療》課件
- 人教版三年級上冊數(shù)學(xué)應(yīng)用題100題及答案
- 防污閃涂料施工技術(shù)措施
評論
0/150
提交評論