難點解析北師大版9年級數學上冊期末試卷及答案詳解(基礎+提升)_第1頁
難點解析北師大版9年級數學上冊期末試卷及答案詳解(基礎+提升)_第2頁
難點解析北師大版9年級數學上冊期末試卷及答案詳解(基礎+提升)_第3頁
難點解析北師大版9年級數學上冊期末試卷及答案詳解(基礎+提升)_第4頁
難點解析北師大版9年級數學上冊期末試卷及答案詳解(基礎+提升)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖所示,雙曲線y=上有一動點A,連接OA,以O為頂點、OA為直角邊,構造等腰直角三角形OAB,則△OAB面積的最小值為(

)A. B. C.2 D.22、距考試還有20天的時間,為鼓舞干勁,老師要求班上每一名同學要給同組的其他同學寫一份拼搏進取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人3、如圖,在矩形中,,,是矩形的對稱中心,點、分別在邊、上,連接、,若,則的值為(

)A. B. C. D.4、在某籃球邀請賽中,參賽的每兩個隊之間都要比賽一場,共比賽36場,設有x個隊參賽,根據題意,可列方程為()A. B.C. D.5、如圖,點A是反比例函數圖象上的一點,過點A作軸,垂足為點C,D為AC的中點,若的面積為1,則k的值為()A. B. C.3 D.46、如圖,四邊形OABC是平行四邊形,點A的坐標為A(3,0),∠COA=60°,D為邊AB的中點,反比例函數y=(x>0)的圖象經過C,D兩點,直線CD與y軸相交于點E,則點E的坐標為(

)A.(0,2) B.(0,3) C.(0,5) D.(0,6)二、多選題(6小題,每小題2分,共計12分)1、用配方法解下列方程,配方錯誤的是(

)A.化為 B.化為C.化為 D.化為2、下列命題中的真命題是(

)A.矩形的對角線相等 B.對角線相等的四邊形是矩形C.菱形的對角線互相垂直平分 D.對角線互相垂直的四邊形是菱形3、已知關于的方程,下列說法不正確的是(

)A.當時,方程無解 B.當時,方程有兩個相等的實數根C.當時,方程有兩個相等的實數根 D.當時,方程有兩個不相等的實數根4、如圖,點P在函數(x>0,k>2,k為常數)的圖象上,PC⊥x軸交的圖象于點A,PD⊥y軸于點D,交,當點P在(x>0,k>2,k為常數)的圖象上運動時(

)A.ODB與OCA的面積相等 B.四邊形PAOB的面積不會發(fā)生變化C.PA與PB始終相等 D.5、不能說明△ABC∽△A’B’C’的條件是(

)A.或 B.且C.且 D.且6、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,四邊形ABCD是一個正方形,E是BC延長線上一點,且AC=EC,則∠DAE的度數為_________.2、圖1是一種手機托架,使用該手機托架示意圖如圖3所示,底部放置手機處寬AB1.2厘米,托架斜面長BD6厘米,它有C到F共4個檔位調節(jié)角度,相鄰兩個檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號手機置于托架上(圖2),手機屏幕長AG是15厘米,O是支點且OBOE2.5厘米(支架的厚度忽略不計).當支架調到E檔時,點G離水平面的距離GH為__________cm.3、菱形的一條對角線長為8,其邊長是方程x2-8x+15=0的一個根,則該菱形的面積為________.4、如圖,點E是菱形ABCD邊AB的中點,點F為邊AD上一動點,連接EF,將△AEF沿直線EF折疊得到△A'EF,連接A'D,A'C.已知BC=4,∠B=120°,當△A'CD為直角三角形時,線段AF的長為______.5、如果關于的一元二次方程的一個解是,那么代數式的值是___________.6、如圖,在△ABC中,∠A=30°,∠B=90°,D為AB中點,E在線段AC上,,則_____.7、如圖,矩形紙片ABCD,AD=4,AB=3.如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,如果直線EF經過點D,那么線段BE的長是____.8、如圖,點E為矩形ABCD的邊BC長上的一點,作DF⊥AE于點F,且滿足DF=AB.下面結論:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正確的結論是_____.四、解答題(6小題,每小題10分,共計60分)1、定義:有一組對邊相等且這一組對邊所在直線互相垂直的凸四邊形叫做“等垂四邊形”.(1)如圖①,四邊形ABCD與四邊形AEFG都是正方形,135°<∠AEB<180°,求證:四邊形BEGD是“等垂四邊形”;(2)如圖②,四邊形ABCD是“等垂四邊形”,AD≠BC,連接BD,點E,F,G分別是AD,BD,BC的中點,連接EG,FG,EF.試判定△EFG的形狀,并證明你的結論;(3)如圖③,四邊形ABCD是“等垂四邊形”,AD=4,BC=8,請直接寫出邊AB長的最小值.

2、水果批發(fā)市場有一種高檔水果,如果每千克盈利(毛利)10元,每天可售出600kg.經市場調查發(fā)現,在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20kg.(1)若以每千克能盈利17元的單價出售,求每天的總毛利潤為多少元;(2)現市場要保證每天總毛利潤為7500元,同時又要使顧客得到實惠,求每千克應漲價多少元;(3)現需按毛利潤的10%繳納各種稅費,人工費每日按銷售量每千克支出1.5元,水電房租費每日300元.若每天剩下的總純利潤要達到6000元,求每千克應漲價多少元.3、如圖,在平面直角坐標系中,的三個頂點坐標分別為,,.以原點O為位似中心,位似比為,在y軸的左側,畫出將放大后的,并寫出點的坐標______.4、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=05、如圖,在邊長為1的正方形網格中建立平面直角坐標系,已知△ABC三個頂點分別為A(﹣1,2)、B(2,1)、C(4,5).(1)以原點O為位似中心,在x軸的上方畫出△A1B1C1,使△A1B1C1與△ABC位似,且相似比為2;(2)△A1B1C1的面積是平方單位.(3)點P(a,b)為△ABC內一點,則在△A1B1C1內的對應點P’的坐標為.6、已知關于的一元二次方程有實數根.(1)求的取值范圍.(2)若該方程的兩個實數根為、,且,求的值.-參考答案-一、單選題1、C【解析】【分析】根據等腰直角三角形性質得出S△OAB=OA?OB=OA2,先求得OA取最小值時A的坐標,即可求得OA的長,從而求得△OAB面積的最小值.【詳解】解:∵△AOB是等腰直角三角形,∴OA=OB,∴S△OAB=OA?OB=OA2,∴OA取最小值時,△OAB面積的值最小,∵當直線OA為y=x時,OA最小,解得或,∴此時A的坐標為(,),∴OA=2,∴,∴△OAB面積的最小值為2,故選:C.【考點】本題考查了反比例函數圖象上點的坐標特征,等腰直角三角形的性質,三角形的面積,求得OA取最小值時A的坐標是解題的關鍵.2、B【解析】【分析】設小組有x人,根據題意,得x(x-1)=30,解方程即可.【詳解】設小組有x人,根據題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點】本題考查了一元二次方程的應用,熟練掌握方程的應用是解題的關鍵.3、D【解析】【分析】連接AC,BD,過點O作于點,交于點,利用勾股定理求得的長即可解題.【詳解】解:如圖,連接AC,BD,過點O作于點,交于點,四邊形ABCD是矩形,同理可得故選:D.【考點】本題考查中心對稱、矩形的性質、勾股定理等知識,學會添加輔助線,構造直角三角形是解題關鍵.4、A【解析】【分析】共有x個隊參加比賽,則每隊參加(x-1)場比賽,但2隊之間只有1場比賽,根據共安排36場比賽,列方程即可.【詳解】解:設有x個隊參賽,根據題意,可列方程為:x(x﹣1)=36,故選A.【考點】此題考查由實際問題抽象出一元二次方程,解題關鍵在于得到比賽總場數的等量關系.5、D【解析】【分析】先設出點A的坐標,進而表示出點D的坐標,利用△ADO的面積建立方程求出,即可得出結論.【詳解】點A的坐標為(m,2n),∴,∵D為AC的中點,∴D(m,n),∵AC⊥軸,△ADO的面積為1,∴,∴,∴,故選:D.【考點】本題考查反比例函數系數k的幾何意義、反比例函數圖象上點的坐標特征,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用反比例函數的性質解答.6、B【解析】【分析】作CE⊥x軸于點E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設C的坐標為(x,x),表示出D的坐標,將C、D兩點坐標代入反比例函數的解析式,解關于x的方程求出x即可得到點C、D的坐標,進而求得直線CD的解析式,最后計算該直線與y軸交點坐標即可得出結果.【詳解】解:作CE⊥x軸于點E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設C的坐標為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點的坐標為(3+x,),把C、D的坐標代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當x=0時,,∴點E的坐標為(0,).故選:B.【考點】本題主要考查了平行四邊形的性質、運用待定系數法求函數的解析式以及含度角的直角三角形的性質.根據反比例函數圖象經過C、D兩點,得出關于x的方程是解決問題的關鍵.二、多選題1、BD【解析】【分析】根據配方法的一般步驟:(1)把常數項移到等號的右邊;(2)把二次項的系數化為1,(3)等式兩邊同時加上一次項系數一半的平方即可得到結論.【詳解】A.化為,正確,不符合題意;B.化為,錯誤,符合題意;C.化為,正確,不符合題意;D.化為,錯誤,符合題意.故選:BD.【考點】此題考查了配方法解一元二次方程,屬于基礎題,熟練掌握配方法的一般步驟是解題關鍵.2、AC【解析】【分析】根據菱形的判定與性質,矩形的判定和性質即可進行判斷.【詳解】解:A、矩形的對角線相等,是真命題,符合題意;B、對角線相等的平行四邊形是矩形,是假命題,不符合題意;C、菱形的對角線互相垂直平分,是真命題,符合題意;D、對角線互相垂直平分的四邊形是菱形,是假命題,不符合題意;故選AC.【考點】本題考查了,矩形的判定,菱形的判定與性質,解題的關鍵是掌握所學的定理.3、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數根,故此選項正確,不符合題意;D當時,根據A選項,若k=0,此時方程有一個實數根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.4、AB【解析】【分析】由反比例函數k的幾何意義可判斷出各個結論的正誤.【詳解】解:A.∵點A,B在函數的圖象上,∴,故選項A正確;B.∵矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發(fā)生變化;故此選項正確.C.PA與PB不一定相等,只有當四邊形OCPD是正方形時滿足PA=PB,故此選項不正確;D.∵A、B在上,∴S△AOC=S△BOE,∴?OC?AC=?OD?BD,∴OC?AC=OD?BD,∵OC=PD,OD=PC,∴PD?AC=DB?PC,∴.故此選項不正確.故選AB【考點】此題是反比例函數綜合題,主要考查了反比例函數(k≠0)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經??疾榈囊粋€知識點;這里體現了數形結合的思想,做此類題一定要正確理解k的幾何意義.5、ABD【解析】【分析】根據相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.6、BCD【解析】【分析】根據一元二次方程的定義對6個選項逐一進行分析.【詳解】A中最高次數是3不是2,故本選項錯誤;B符合一元二次方程的定義,故本選項正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項錯誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項錯誤.故答案為:BCD【考點】本題考查了一元二次方程的概念,只有一個未知數且未知數最高次數為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識點.三、填空題1、22.5°【解析】【分析】由四邊形ABCD是一個正方形,根據正方形的性質,可得∠ACB=45°,又由AC=EC,根據等邊對等角,可得∠E=∠CAE,繼而根據等腰三角形的性質和三角形的內角和求得∠EAC的度數,進一步即可求得∠DAE的度數.【詳解】解:∵四邊形是正方形,∴,∴,又∵,∴,則.故答案為:22.5°【考點】此題考查了正方形的性質以及等腰三角形的性質.此題比較簡單,注意掌握數形結合思想的應用.2、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質求出DT,BT,AD,即可求出GH的長.【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點】本題考查了相似三角形的應用,勾股定理的應用等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考填空題中的壓軸題.3、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據菱形的性質得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線長,然后根據菱形的面積公式計算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對角線長為8,∴菱形的邊長為5,∵菱形的另一條對角線長=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了菱形的性質.4、2或【解析】【分析】分當時和當時兩種情況討論求解即可.【詳解】解:如圖1所示,當時,取CD中點H,連接,∴,∵四邊形ABCD是菱形,E為AB中點,∴,∠A=180°-∠B=60°,,由折疊的性質可知,,∴,連接EH,∵,∴四邊形AEHD是平行四邊形,∴,,∵由三角形三邊的關系可知,當點不在線段EH上時,必有,這與矛盾,∴E、、H三點共線,∴,∴△AEF為等邊三角形,∴;如圖2所示,當時,連接BD,ED,過點F作FG⊥AB于G,∵∠ABC=120°,四邊形ABCD是菱形,∴AB=AD,∠A=60°,∴△ABD是等邊三角形,∵E是AB中點,∴DE⊥AB,∴∠ADE=30°,∴∠EDC=90°,∴此時三點共線,由翻折的性質可得,∵FG⊥AE,∠A=60°,∠AEF=45°,∴∠AFG=30°,∠GFE=45°,∴AF=2AG,EG=FG,∴,∵,∴,∴,故答案為:2或.【考點】本題主要考查了菱形的性質,等邊三角形的性質與判定,折疊的性質,三角形三邊的關系,含30度角的直角三角形的性質,平行四邊形的性質與判定,直角三角形斜邊上的中線等等,利用分類討論的思想求解是解題的關鍵.5、【解析】【分析】根據關于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關鍵是明確一元二次方程的解的含義.6、或【解析】【分析】由題意可求出,取AC中點E1,連接DE1,則DE1是△ABC的中位線,滿足,進而可求此時,然后在AC上取一點E2,使得DE1=DE2,則,證明△DE1E2是等邊三角形,求出E1E2=,即可得到,問題得解.【詳解】解:∵D為AB中點,∴,即,取AC中點E1,連接DE1,則DE1是△ABC的中位線,此時DE1∥BC,,∴,在AC上取一點E2,使得DE1=DE2,則,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等邊三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,綜上,的值為:或,故答案為:或.【考點】本題考查了三角形中位線的性質,平行線分線段成比例,等邊三角形的判定和性質以及含30°角的直角三角形的性質等,根據進行分情況求解是解題的關鍵.7、【解析】【分析】根據題意作出圖形,根據矩形的性質與折疊的性質證明,進而勾股定理求得,即可求得,根據折疊,即可求解.【詳解】解:如圖∵將紙片沿AE折疊,使點B落在點F處,四邊形ABCD是矩形在中,故答案為:【考點】本題考查了矩形與折疊問題,勾股定理,掌握勾股定理是解題的關鍵.8、①②④.【解析】【分析】證明Rt△DEF≌Rt△DEC得出①正確;在證明△ABE≌△DFA得出S△ABE=S△ADF;②正確;得出BE=AF,④正確,③不正確;即可得出結論.【詳解】解:四邊形是矩形,,在和中,,①正確在和中,;②正確,④正確,③不正確故答案為:①②④.【考點】本題考查了矩形的性質、全等三角形的判定與性質等知識,熟練掌握矩形的性質,證明三角形全等是解題的關鍵.四、解答題1、∴拋物線的解析式為y=x(2)①∵A(1,2),B(7,2),當拋物線經過點A時,a=2,當拋物線經過點B時,2=49a,∴a=,∵若G與△ABC有交點,∴≤a≤2.②由題意當a=時,y=x2,當y=8時,8=x2,∴x>0,∴x=14,∴當反比例函數y=經過點(14,8)時k的值最大,此時k=112,∴k的最大值為112【考點】本題考查二次函數綜合題、待定系數法、勾股定理等知識,解題的關鍵是理解題意,學會利用特殊點解決問題,屬于中考壓軸題.2.(1)證明見解析;(2)△EFG是等腰直角三角形;證明見解析;(3)AB最小值為【解析】【分析】延長BE,DG交于點H,先證△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.結合∠ABD+∠ADB=90°,知∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即可得∠BHD=90°.從而得證;(2)延長BA,CD交于點H,由四邊形ABCD是“等垂四邊形”,AD≠BC知AB⊥CD,AB=CD,從而得∠HBC+∠HCB=90°,根據三個中點知EF=AB,GF=CD,EF∥AB,GF∥DC,據此得∠BGF=∠C,EFD=∠HBD,EF=GF.由∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°可得答案;(3)延長BA,CD交于點H,分別取AD,BC的中點E,F.連接HE,EF,HF,由EF≥HF?HE=BC?AD=4?2=2然后結合(2)可知AB=EF≥2可得答案.【詳解】解:(1)如圖①,延長BE,DG交于點H,∵四邊形ABCD與四邊形AEFG都為正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四邊形BEGD是“等垂四邊形”;(2)△EFG是等腰直角三角形.理由如下:如圖②,延長BA,CD交于點H,∵四邊形ABCD是“等垂四邊形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵點E,F,G分別是AD,BC,BD的中點,∴EF=AB,GF=CD,EF∥AB,GF∥DC,∴∠BGF=∠C,∠EFD=∠HBD,EF=GF,∴∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°.∴△EFG是等腰直角三角形;(3)延長BA,CD交于點H,分別取AD,BC的中點E,F.連接HE,EF,HF,則EF≥HF?HE=BC?AD=4?2=2,由(2)可知AB=EF≥2,∴AB最小值為【考點】本題是四邊形的綜合問題,解題的關鍵是掌握正方形的性質、全等三角形的判定與性質、三角形中位線定理及等腰直角三角形的性質等知識點.2、(1)每天的總毛利潤為7820元;(2)每千克應漲價5元;(3)每千克應漲價15元或元【解析】【分析】(1)設每千克盈利x元,可售y千克,由此求得關于y與x的函數解析式,進一步代入求得答案即可;(2)利用每千克的盈利×銷售的千克數=總利潤,列出方程解答即可;(3)利用每天總毛利潤﹣稅費﹣人工費﹣水電房租費=每天總純利潤,列出方程解答即可.(1)解:設每千克盈利x元,可售y千克,設y=kx+b,則當x=10時,y=600,當x=11時,y=600﹣20=580,由題意得,,解得.所以銷量y與盈利x元之間的關系為y=﹣20x+800,當x=17時,y=460,則每天的毛利潤為17×460=7820元;(2)解:設每千克盈利x元,由(1)可得銷量為(﹣20x+800)千克,由題意得x(﹣20x+800)=7500,解得:x1=25,x2=15,∵要使得顧客得到實惠,應選x=15,∴每千克應漲價15﹣10=5元;(3)解:設每千克盈利x元,由題意得x(﹣20x+800)﹣10%x(﹣20x+800)﹣1.5(﹣20x+800)﹣300=6000,解得:x1=25,x2,則每千克應漲價25﹣10=15元或10元.【考點】此題主要一元二次方程的實際運用,找出題目蘊含的數量關系,理解銷售問題中的基本關系是解決問題的關鍵.3、圖見解析,【解析】【分析】由位似的性質進行作圖和求解,即可得到答案.【詳解】如圖,即為所求,故答案為:【考點】本題考查了位似三角形的性質,在直角坐標系中作位似

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論