版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,點(diǎn)O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°2、如圖A、B、C在⊙O上,連接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度數(shù)是120o,OC=.則圖中陰影部分的面積是(
)A. B. C. D.3、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.04、已知學(xué)校航模組設(shè)計(jì)制作的火箭升空高度h(m)與飛行時(shí)間t(s)滿足函數(shù)表達(dá)式h=﹣t2+24t+1,則下列說法中正確的是(
)A.點(diǎn)火后1s和點(diǎn)火后3s的升空高度相同B.點(diǎn)火后24s火箭落于地面C.火箭升空的最大高度為145mD.點(diǎn)火后10s的升空高度為139m5、二次函數(shù)的圖像如圖所示,現(xiàn)有以下結(jié)論:(1):(2);(3),(4);(5);其中正確的結(jié)論有(
)A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè).6、如圖,小明在一條東西走向公路的O處,測(cè)得圖書館A在他的北偏東方向,且與他相距,則圖書館A到公路的距離為(
)A. B. C. D.二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,AB是的直徑,C是上一點(diǎn),E是△ABC的內(nèi)心,,延長(zhǎng)BE交于點(diǎn)F,連接CF,AF.則下列結(jié)論正確的是(
)A. B.C.△AEF是等腰直角三角形 D.若,則2、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),若△ABP與△CDP相似,則BP=(
)A.3.6B.C.D.2.43、如圖,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且,下列結(jié)論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(
)A.① B.② C.③ D.④4、如圖,拋物線過點(diǎn),對(duì)稱軸是直線.下列結(jié)論正確的是(
)A.B.C.若關(guān)于x的方程有實(shí)數(shù)根,則D.若和是拋物線上的兩點(diǎn),則當(dāng)時(shí),5、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點(diǎn).則以下結(jié)論正確的有(
)A.B.當(dāng)時(shí),y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點(diǎn)D.若線段AB上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),則a的取值范圍是6、對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“※”:,例如:4※2,因?yàn)?,所以,若函?shù),則下列結(jié)論正確的是(
)A.方程的解為,;B.當(dāng)時(shí),y隨x的增大而增大;C.若關(guān)于x的方程有三個(gè)解,則;D.當(dāng)時(shí),函數(shù)的最大值為1.7、下表中列出的是一個(gè)二次函數(shù)的自變量與函數(shù)的幾組對(duì)應(yīng)值:…013……6…下列各選項(xiàng)中,正確的是(
)A.函數(shù)圖象的開口向下 B.當(dāng)時(shí),的值隨的增大而增大C.函數(shù)的圖象與軸無交點(diǎn) D.這個(gè)函數(shù)的最小值小于第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、如果一條拋物線與軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.2、北侖梅山所產(chǎn)的草莓柔嫩多汁,芳香味美,深受消費(fèi)者喜愛.有一草莓種植大戶,每天草莓的采摘量為300千克,當(dāng)草莓的零售價(jià)為22元/千克時(shí),剛好可以全部售完.經(jīng)調(diào)查發(fā)現(xiàn),零售價(jià)每上漲1元,每天的銷量就減少30千克,而剩余的草莓可由批發(fā)商以18元/千克的價(jià)格統(tǒng)一收購(gòu)走,則當(dāng)草莓零售價(jià)為___元時(shí),該種植戶一天的銷售收入最大.3、若二次函數(shù)的頂點(diǎn)在x軸上,則__________.4、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣3,0),B(1,0),與y軸交于點(diǎn)C.下列結(jié)論:①abc>0;②3a﹣c=0;③當(dāng)x<0時(shí),y隨x的增大而增大;④對(duì)于任意實(shí)數(shù)m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號(hào)).5、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中點(diǎn)為D,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意一個(gè)角度得到△FEC,EF的中點(diǎn)為G,連接DG,在旋轉(zhuǎn)過程中,DG的最大值是________6、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D在拋物線上,且CD∥AB.AD與y軸相交于點(diǎn)E,過點(diǎn)E的直線PQ平行于x軸,與拋物線相交于P,Q兩點(diǎn),則線段PQ的長(zhǎng)為_____.7、已知關(guān)于的一元二次方程,有下列結(jié)論:①當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)根;②當(dāng)時(shí),方程不可能有兩個(gè)異號(hào)的實(shí)根;③當(dāng)時(shí),方程的兩個(gè)實(shí)根不可能都小于1;④當(dāng)時(shí),方程的兩個(gè)實(shí)根一個(gè)大于3,另一個(gè)小于3.以上4個(gè)結(jié)論中,正確的個(gè)數(shù)為_________.四、解答題(6小題,每小題10分,共計(jì)60分)1、某超市銷售一種商品,每件成本為50元,銷售人員經(jīng)調(diào)查發(fā)現(xiàn),銷售單價(jià)為100元時(shí),每月的銷售量為50件,而銷售單價(jià)每降低2元,則每月可多售出10件,且要求銷售單價(jià)不得低于成本.(1)求該商品每月的銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(不需要求自變量取值范圍)(2)若使該商品每月的銷售利潤(rùn)為4000元,并使顧客獲得更多的實(shí)惠,銷售單價(jià)應(yīng)定為多少元?(3)超市的銷售人員發(fā)現(xiàn):當(dāng)該商品每月銷售量超過某一數(shù)量時(shí),會(huì)出現(xiàn)所獲利潤(rùn)反而減小的情況,為了每月所獲利潤(rùn)最大,該商品銷售單價(jià)應(yīng)定為多少元?2、(1)方法導(dǎo)引:?jiǎn)栴}:如圖1,等邊三角形的邊長(zhǎng)為6,點(diǎn)是和的角平分線交點(diǎn),,繞點(diǎn)任意旋轉(zhuǎn),分別交的兩邊于,兩點(diǎn).求四邊形面積.討論:①小明:在旋轉(zhuǎn)過程中,當(dāng)經(jīng)過點(diǎn)時(shí),一定經(jīng)過點(diǎn).②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因?yàn)?,所以只要算出的面積就得出了四邊形的面積.老師:同學(xué)們的思路很清晰,也很正確.在分析和解決問題時(shí),我們經(jīng)常會(huì)借用特例作輔助線來解決一般問題:請(qǐng)你按照討論的思路,直接寫出四邊形的面積:________.(2)應(yīng)用方法:①特例:如圖2,的頂點(diǎn)在等邊三角形的邊上,,,邊于點(diǎn),于點(diǎn),求的面積.②探究:如圖3,已知,頂點(diǎn)在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應(yīng)用:如圖4,已知,頂點(diǎn)在等邊三角形的邊的延長(zhǎng)線上,,,記的面積為,的面積為,請(qǐng)直接寫出與的關(guān)系式.
3、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點(diǎn)D在線段AC上,且∠CBD=∠BAC.作法:①以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫圓;②以點(diǎn)C為圓心,BC長(zhǎng)為半徑畫弧,交⊙A于點(diǎn)P(不與點(diǎn)B重合);③連接BP交AC于點(diǎn)D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補(bǔ)全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點(diǎn)C在⊙A上.∵點(diǎn)P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據(jù))∵BC=PC,∴∠CBD=.()(填推理的依據(jù))∴∠CBD=∠BAC.4、某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600元,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價(jià)為x元,請(qǐng)你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤(rùn)W元;(2)在(1)的條件下,若商場(chǎng)獲利了10000元銷售利潤(rùn),求該玩具銷售單價(jià)x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于45元,且商場(chǎng)要完成不少于480件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲利的最大利潤(rùn)是多少元?5、如圖所示,拋物線的對(duì)稱軸為直線,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn).(1)求拋物線的解析式;(2)連結(jié),在第一象限內(nèi)的拋物線上,是否存在一點(diǎn),使的面積最大?最大面積是多少?6、某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣出210件;如果售價(jià)超過50元但不超過80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣1件,如果售價(jià)超過80元后,若再漲價(jià),則每漲1元每月少賣3件.設(shè)每件商品的售價(jià)x元(x為整數(shù)),每個(gè)月的銷售量為y件.(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;(2)設(shè)每月的銷售利潤(rùn)為W,請(qǐng)直接寫出W與x的函數(shù)關(guān)系式.-參考答案-一、單選題1、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計(jì)算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計(jì)算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點(diǎn)】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個(gè)內(nèi)角.2、C【解析】【分析】首先根據(jù)∠BOC=3∠AOB,劣弧AC的度數(shù)是120o得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC-S△OEC求解即可.【詳解】解:設(shè)OB與AC相交于點(diǎn)E,如圖∵劣弧AC的度數(shù)是120o∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∵∠BOC=3∠AOB又∵∠AOC=∠AOB+∠BOC∴∠AOC=∠AOB+3∠AOB=120°∴∠AOB=30°∴∠BOC=3∠AOB=90°在Rt△OCE中,OC=2∴OE=OCtan∠OCE=2tan30°=2×=2∴S△OEC=×2×2=2S扇形OBC=∴用S陰影=S扇形OBC-S△OEC=-2故選C.【考點(diǎn)】本題考查了扇形面積的計(jì)算,解直角三角形等知識(shí).在求不規(guī)則的陰影部分的面積時(shí)常常轉(zhuǎn)化為幾個(gè)規(guī)則幾何圖形的面積的和或差.3、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.4、C【解析】【分析】分別求出t=1、3、24、10時(shí)h的值可判斷A、B、D三個(gè)選項(xiàng),將解析式配方成頂點(diǎn)式可判斷C選項(xiàng).【詳解】解:A、當(dāng)t=1時(shí),h=24;當(dāng)t=3時(shí),h=64;所以點(diǎn)火后1s和點(diǎn)火后3s的升空高度不相同,此選項(xiàng)錯(cuò)誤;B、當(dāng)t=24時(shí),h=1≠0,所以點(diǎn)火后24s火箭離地面的高度為1m,此選項(xiàng)錯(cuò)誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項(xiàng)正確;D、當(dāng)t=10時(shí),h=141m,此選項(xiàng)錯(cuò)誤;故選:C.【考點(diǎn)】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).5、C【解析】【分析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】解:(1)∵函數(shù)開口向下,∴a<0,∵對(duì)稱軸在y軸的右邊,∴,∴b>0,故命題正確;(2)∵a<0,b>0,c>0,∴abc<0,故命題正確;(3)∵當(dāng)x=-1時(shí),y<0,∴a-b+c<0,故命題錯(cuò)誤;(4)∵當(dāng)x=1時(shí),y>0,∴a+b+c>0,故命題正確;(5)∵拋物線與x軸于兩個(gè)交點(diǎn),∴b2-4ac>0,故命題正確;故選C.【考點(diǎn)】本題考查了二次函數(shù)圖象與二次函數(shù)系數(shù)之間的關(guān)系,會(huì)利用對(duì)稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用.6、A【解析】【分析】根據(jù)題意可得△OAB為直角三角形,∠AOB=30°,OA=200m,根據(jù)三角函數(shù)定義即可求得AB的長(zhǎng).【詳解】解:由已知得,∠AOB=90°60°=30°,OA=200m.則AB=OA=100m.故選:A.【考點(diǎn)】本題主要考查了解直角三角形的應(yīng)用——方向角問題,正確記憶三角函數(shù)的定義是解決本題的關(guān)鍵.二、多選題1、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進(jìn)一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項(xiàng)B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項(xiàng)C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項(xiàng)A錯(cuò)誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項(xiàng)D正確,故選:BCD【考點(diǎn)】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識(shí),證明△ABC是等腰直角三角形是解題的關(guān)鍵.2、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計(jì)算出結(jié)果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點(diǎn)】本題考查相似三角形得的性質(zhì)與應(yīng)用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關(guān)鍵.3、BC【解析】【分析】根據(jù)相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質(zhì)逐一判斷選項(xiàng)即可.【詳解】解:在正方形中,是的中點(diǎn),是上一點(diǎn),且,,..,.,,,..,.②③正確.故選:BC.【考點(diǎn)】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握判定定理有①有兩個(gè)對(duì)應(yīng)角相等的三角形相似,②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.4、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對(duì)稱軸在y軸左側(cè),∴a、b同號(hào),∴b<0,∵拋物線與y軸交點(diǎn)在正半軸上,∴c>0,∴abc>0,故此選項(xiàng)不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點(diǎn),對(duì)稱軸是直線,∴拋物線與x軸另一交點(diǎn)為(2,0),∴當(dāng)x=2時(shí),y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項(xiàng)不符合題意;C.∵-=-1,∴b=2a,∵當(dāng)x=2時(shí),y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關(guān)于x的方程有實(shí)數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項(xiàng)不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(diǎn)(x1,y1)到對(duì)稱軸的距離大于點(diǎn)(x2,y2)到對(duì)稱軸的距離,∴y1<y2,故此選項(xiàng)符合題意;故選:D.【考點(diǎn)】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.5、ACD【解析】【分析】求得頂點(diǎn)坐標(biāo),根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯(cuò)誤;二次函數(shù)是不為0的常數(shù))的頂點(diǎn),即可判斷③錯(cuò)誤;根據(jù)題意時(shí),時(shí),即可判斷④正確.【詳解】解:二次函數(shù),頂點(diǎn)為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點(diǎn),拋物線開口向上,,故①正確;時(shí),隨的增大而增大,故②錯(cuò)誤;由題意可知當(dāng),二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點(diǎn),故③正確;線段上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且對(duì)稱軸為直線,∴當(dāng)時(shí),,當(dāng)時(shí),,,解得,故④正確;故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.6、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時(shí)y=2x2﹣2x,x<1時(shí),y=﹣x2+1,進(jìn)而求解.【詳解】解:根據(jù)題意得:當(dāng)2x≥x+1,即x≥1時(shí),y=(2x)2﹣2x(x+1)=2x2﹣2x,當(dāng)2x<x+1,即x<1時(shí),y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當(dāng)x≥1時(shí),2x2﹣2x=0,解得x=0(舍去)或x=1,當(dāng)x<1時(shí),﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當(dāng)x>1時(shí),y=2x2﹣2x,拋物線開口向上,對(duì)稱軸是直線x=,∴x>1時(shí),y隨x的增大而增大,∴B選項(xiàng)正確.當(dāng)x≥1時(shí),y=2x2﹣2x=2(x﹣)2﹣,∴x=1時(shí),y取最小值為y=0,當(dāng)x<1時(shí),y=﹣x2+1=0,當(dāng)x=0時(shí),y取最大值為y=1,如圖,當(dāng)0<m<1時(shí),方程(2x)※(x+1)=m有三個(gè)解,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.故答案為:ABD.【考點(diǎn)】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.7、BD【解析】【分析】根據(jù)拋物線經(jīng)過點(diǎn)(0,-4),(3,-4)可得拋物線對(duì)稱軸為直線,由拋物線經(jīng)過點(diǎn)(-2,6)可得拋物線開口向上,進(jìn)而求解.【詳解】解:∵拋物線經(jīng)過點(diǎn)(0,-4),(3,-4),∴拋物線對(duì)稱軸為直線,∵拋物線經(jīng)過點(diǎn)(-2,6),∴當(dāng)x<時(shí),y隨x增大而減小,∴拋物線開口向上,且跟x軸有交點(diǎn),故A,C錯(cuò)誤,不符合題意;∴x>時(shí),y隨x增大而增大,故B正確,符合題意;由對(duì)稱性可知,在處取得最小值,且最小值小于-6.故D正確,符合題意.故選:BD.【考點(diǎn)】本題考查二次函數(shù)的圖象與性質(zhì),解題關(guān)鍵是掌握二次函數(shù)與方程的關(guān)系.三、填空題1、2【解析】【分析】首先求出的頂點(diǎn)坐標(biāo)和與x軸兩個(gè)交點(diǎn)坐標(biāo),然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點(diǎn)坐標(biāo)為∵當(dāng)時(shí),即,解得:,∴拋物線與x軸兩個(gè)交點(diǎn)坐標(biāo)為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點(diǎn)】此題考查了二次函數(shù)與x軸的交點(diǎn)問題,等腰直角三角形的性質(zhì),解題的關(guān)鍵是求出的頂點(diǎn)坐標(biāo)和與x軸兩個(gè)交點(diǎn)坐標(biāo).2、25【解析】【分析】設(shè)草莓的零售價(jià)為x元/千克,銷售收入為y元,由題意得y=30x2+1500x11880,再根據(jù)二次函數(shù)的性質(zhì)解答即可.【詳解】解:設(shè)草莓的零售價(jià)為x元/千克,銷售收入為y元,由題意得,y=x[30030(x22)]+18×30(x22)=30x2+1500x11880,當(dāng)時(shí),y最大,∴當(dāng)草莓的零售價(jià)為25元/千克時(shí),種植戶一天的銷售收入最大.故答案為:25.【考點(diǎn)】本題考查二次函數(shù)的實(shí)際應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解題關(guān)鍵.3、-2或【解析】【分析】根據(jù)二次函數(shù)一般式的頂點(diǎn)坐標(biāo)公式表示出頂點(diǎn),再根據(jù)頂點(diǎn)在x軸上,建立等量關(guān)系求解即可.【詳解】解:的頂點(diǎn)坐標(biāo)為:∵頂點(diǎn)在x軸上∴解得:故答案為:或【考點(diǎn)】本題考查二次函數(shù)一般式的頂點(diǎn)坐標(biāo),掌握二次函數(shù)一般式的頂點(diǎn)坐標(biāo)公式是解題關(guān)鍵.4、①④或④①【解析】【分析】根據(jù)拋物線的對(duì)稱軸,開口方向,與軸的交點(diǎn)位置,即可判斷①,根據(jù)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣3,0),B(1,0),即可求得對(duì)稱軸,以及當(dāng)時(shí),,進(jìn)而可以判斷②③,根據(jù)頂點(diǎn)求得函數(shù)的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對(duì)稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣3,0),B(1,0),對(duì)稱軸為,則,當(dāng),,,故②不正確,由函數(shù)圖象以及對(duì)稱軸為,可知,當(dāng)時(shí),隨的增大而增大,故③不正確,對(duì)稱軸為,則當(dāng)時(shí),取得最大值,對(duì)于任意實(shí)數(shù)m,總有,即,故④正確.故答案為:①④.【考點(diǎn)】本題考查了二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合是解題的關(guān)鍵.5、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,連接CG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出CG,然后根據(jù)三角形的任意兩邊之和大于第三邊判斷出D、C、G三點(diǎn)共線時(shí)DG有最大值,再代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.【詳解】連接CG,∵BC的中點(diǎn)為D∵△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意一個(gè)角度得到△FEC,EF的中點(diǎn)為G由三角形的三邊關(guān)系得∴D、C、G三點(diǎn)共線時(shí),DG有最大值故答案為:6.【考點(diǎn)】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、解直角三角形、三角形的三邊關(guān)系是解題的關(guān)鍵.6、2【解析】【分析】利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A,B,C,D的坐標(biāo),由點(diǎn)A,D的坐標(biāo),利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)E的坐標(biāo),再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)P,Q的坐標(biāo),進(jìn)而可求出線段PQ的長(zhǎng).【詳解】解:當(dāng)y=0時(shí),﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點(diǎn)A的坐標(biāo)為(﹣2,0);當(dāng)x=0時(shí),y=﹣x2+x+2=2,∴點(diǎn)C的坐標(biāo)為(0,2);當(dāng)y=2時(shí),﹣x2+x+2=2,解得:x1=0,x2=2,∴點(diǎn)D的坐標(biāo)為(2,2).設(shè)直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當(dāng)x=0時(shí),y=x+1=1,∴點(diǎn)E的坐標(biāo)為(0,1).當(dāng)y=1時(shí),﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點(diǎn)P的坐標(biāo)為(1﹣,1),點(diǎn)Q的坐標(biāo)為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)P,Q的坐標(biāo)是解題的關(guān)鍵.7、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進(jìn)行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當(dāng),即時(shí),方程有兩個(gè)不相等的實(shí)根;故①正確;當(dāng),解得:,方程有兩個(gè)同號(hào)的實(shí)數(shù)根,則當(dāng)時(shí),方程可能有兩個(gè)異號(hào)的實(shí)根;故②錯(cuò)誤;拋物線的對(duì)稱軸為:,則當(dāng)時(shí),方程的兩個(gè)實(shí)根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學(xué)的知識(shí)進(jìn)行解題.四、解答題1、(1);(2)70元;(3)80元.【解析】【分析】(1)明確題意,找到等量關(guān)系求出函數(shù)關(guān)系式即可;(2)根據(jù)題意,按照等量關(guān)系“銷售量(售價(jià)成本)”列出方程,求解即可得到該商品此時(shí)的銷售單價(jià);(3)設(shè)每月所獲利潤(rùn)為,按照等量關(guān)系列出二次函數(shù),并根據(jù)二次函數(shù)的性質(zhì)求得最值即可.【詳解】解:(1)∵依題意得,∴與的函數(shù)關(guān)系式為;(2)∵依題意得,即,解得:,,∵∴當(dāng)該商品每月銷售利潤(rùn)為,為使顧客獲得更多實(shí)惠,銷售單價(jià)應(yīng)定為元;(3)設(shè)每月總利潤(rùn)為,依題意得∵,此圖象開口向下∴當(dāng)時(shí),有最大值為:(元),∴當(dāng)銷售單價(jià)為元時(shí)利潤(rùn)最大,最大利潤(rùn)為元,故為了每月所獲利潤(rùn)最大,該商品銷售單價(jià)應(yīng)定為元.【考點(diǎn)】本題考查了二次函數(shù)在實(shí)際生活中的應(yīng)用,根據(jù)題意找到等量關(guān)系并掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.2、(1);(2)①的面積;②xy=12;③.【解析】【分析】(1)連接、,利用ASA證出,從而得出的面積與四邊形的面積相等,過點(diǎn)作于點(diǎn),利用銳角三角函數(shù)求出OH即可求出△OBC的面積,從而得出結(jié)論;(2)①根據(jù)等邊三角形的性質(zhì)可得,從而求出∠BOD,然后根據(jù)30°所對(duì)的直角邊是斜邊的一半和勾股定理即可求出OD和BD,從而求出結(jié)論;②過點(diǎn)作于,于,根據(jù)相似三角形判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,然后根據(jù)三角形的面積公式即可求出結(jié)論;③過點(diǎn)作交的延長(zhǎng)線于,于,根據(jù)相似三角形的判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,分別求出OM和ON,再結(jié)合三角形的面積公式即可求出結(jié)論.【詳解】解:(1)連接、∵是等邊三角形,∴∵是和的角平分線交點(diǎn)∴∴,∴∴∴的面積與四邊形的面積相等過點(diǎn)作于點(diǎn)∵,∴∵,∴,∴∴四邊形的面積為.故答案為:.(2)①∵是等邊三角形,∴∵于點(diǎn),∴∵,∴,,∴的面積②過點(diǎn)作于,于.由①得:,同理:∵是等邊三角形,∴∵,∴∴,∴∴,∴∴③過點(diǎn)作交的延長(zhǎng)線于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考點(diǎn)】此題考查的是全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù),掌握全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.3、(1)見解析;(2)圓周角定理;,圓周角定理的推論【解析】【分析】(1)利用幾何語(yǔ)言畫出對(duì)應(yīng)的幾何圖形;(2)先根據(jù)圓周角定理得到,再利用等腰三角形的性質(zhì)得到,從而得到.【詳解】解:(1)如圖,為所作;(2)證明:連接,如圖,,點(diǎn)在上.點(diǎn)在上,(圓周角定理),,(圓周角定理的推論).故答案為:圓周角定理;;圓周角定理的推論.【考點(diǎn)】本題考查了作圖復(fù)雜作圖、也考查了圓周角定理,解題的關(guān)鍵是掌握復(fù)雜作圖的五種基本作圖的基本方法,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.4、(1),;(2)50元或80元;(3)商場(chǎng)銷售該品牌玩具獲利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- CCAA - 2023年01月環(huán)境管理體系基礎(chǔ)答案及解析 - 詳解版(65題)
- 養(yǎng)老院老人臨終關(guān)懷服務(wù)制度
- 企業(yè)員工培訓(xùn)與素質(zhì)拓展制度
- 老年終末期患者跌倒預(yù)防環(huán)境改造的循證實(shí)踐培訓(xùn)方案
- 保障智能助手用戶數(shù)據(jù)的安全政策
- 2025年內(nèi)蒙古通遼經(jīng)濟(jì)技術(shù)開發(fā)區(qū)社區(qū)工作者招聘筆試真題
- 2025年山西省煙草專賣局(公司)真題
- 2025年龍巖市中醫(yī)院招聘專業(yè)技術(shù)考試真題
- 2025年福建省能源石化集團(tuán)有限責(zé)任公司招聘考試真題
- 線性代數(shù)02198自考真題模擬試題及答案
- 大體積混凝土施工裂縫防治技術(shù)研究
- 電力行業(yè)物資管理部崗位職責(zé)
- 感染性心內(nèi)膜炎護(hù)理查房
- 導(dǎo)管相關(guān)皮膚損傷患者的護(hù)理 2
- 審計(jì)數(shù)據(jù)管理辦法
- 建筑設(shè)計(jì)防火規(guī)范-實(shí)施指南
- 口腔修復(fù)臨床病例
- 乙狀結(jié)腸冗長(zhǎng)護(hù)理查房
- 2025年廣西中考英語(yǔ)試卷真題(含答案解析)+聽力音頻
- 短文魯迅閱讀題目及答案
- DB34T 5137-2025電化學(xué)儲(chǔ)能液冷系統(tǒng)設(shè)計(jì)技術(shù)要求
評(píng)論
0/150
提交評(píng)論