考點解析四川師范大學附屬第一實驗中學7年級數(shù)學下冊第五章生活中的軸對稱難點解析試卷(解析版含答案)_第1頁
考點解析四川師范大學附屬第一實驗中學7年級數(shù)學下冊第五章生活中的軸對稱難點解析試卷(解析版含答案)_第2頁
考點解析四川師范大學附屬第一實驗中學7年級數(shù)學下冊第五章生活中的軸對稱難點解析試卷(解析版含答案)_第3頁
考點解析四川師范大學附屬第一實驗中學7年級數(shù)學下冊第五章生活中的軸對稱難點解析試卷(解析版含答案)_第4頁
考點解析四川師范大學附屬第一實驗中學7年級數(shù)學下冊第五章生活中的軸對稱難點解析試卷(解析版含答案)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川師范大學附屬第一實驗中學7年級數(shù)學下冊第五章生活中的軸對稱難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、在一些美術(shù)字中,有的漢字是軸對稱圖形.下面?zhèn)€漢字中,可以看作是軸對稱圖形的是()A. B. C. D.2、現(xiàn)實世界中,對稱現(xiàn)象無處不在,中國的方塊字中有些也具有對稱性.下列漢字是軸對稱圖形的是()A.喜 B.歡 C.數(shù) D.學3、下列四個圖案中是軸對稱圖形的是()A. B.C. D.4、下列圖案中是軸對稱圖形的是()A. B.C. D.5、下列圖形不是軸對稱圖形的是().A. B. C. D.6、在一些美術(shù)字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A.吉 B.祥 C.如 D.意7、下列圖標中是軸對稱圖形的是()A. B. C. D.8、如圖所示,把一個正方形三次對折后沿虛線剪下,則所得圖形是()A. B. C. D.9、下列圖形中,是軸對稱圖形的是()A. B. C. D.10、下列圖形中,不是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、在一條可以折疊的數(shù)軸上,A,B表示的數(shù)分別是-16,9,如圖,以點C為折點,將此數(shù)軸向右對折,若點A在點B的右邊,且AB=1,則C點表示的數(shù)是_______.2、如圖①,在長方形ABCD中,E點在AD上,并且∠AEB=60°,分別以BE、CE為折痕進行折疊并壓平,如圖②,若圖②中∠AED=10°,則∠DEC的度數(shù)為___度.3、如圖,點D與點D'關(guān)于AE對稱,∠CED'=60°,則∠AED的度數(shù)為____.4、現(xiàn)實世界中,對稱現(xiàn)象無處不在,中國的方塊字中有些也具備對稱性,如:中、甲;請另寫一個是軸對稱圖形的漢字__________.5、如圖將一條兩邊互相平行的紙帶按如圖折疊,若∠EFG+∠EGD=150°,則∠EGD=_____6、如圖,一束水平光線照在有一定傾斜角度的平面鏡上,若入射光線與反射光線的夾角為50°,則平面鏡與水平地面的夾角的度數(shù)是______.7、如圖,把長方形沿EF對折后使兩部分重合,若,則_______.8、如圖,腰長為22的等腰ABC中,頂角∠A=45°,D為腰AB上的一個動點,將ACD沿CD折疊,點A落在點E處,當CE與ABC的某一條腰垂直時,BD的長為_______.9、下列圖形中,一定是軸對稱圖形的有______________(填序號).(1)線段;(2)三角形;(3)圓;(4)正方形;(5)梯形10、如圖,將一張長方形紙片ABCD沿EF折疊,點D、C分別落在點D′、C′的位置處,若∠1=58°,則∠EFB的度數(shù)是______.三、解答題(6小題,每小題10分,共計60分)1、如圖,平面直角坐標系中,△ABC的頂點A(0,-2),B(2,-4),C(4,-1);(1)畫出與△ABC關(guān)于軸對稱的圖形△A1B1C1,并寫出點B1的坐標;(2)四邊形AA1C1C的面積為___________2、如圖,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分線,BF平分∠ABC交AE于點F,求∠AFB的度數(shù).3、(閱讀與理解)折紙,常常能為證明一個命題提供思路和方法,例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?(分析)把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點C’處,即AC=AC’,據(jù)以上操作,易證明△ACD≌△AC’D,所以∠AC’D=∠C,又因為∠AC’D>∠B,所以∠C>∠B.(感悟與應用)(1)如圖(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關(guān)系,并說明理由;(2)如圖(2),在四邊形ABCD中,AC平分∠DAB,CD=CB.求證:∠B+∠D=180°.4、如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,C點表示數(shù)c,已知數(shù)b是最小的正整數(shù),且a、c滿足.(1)a=_____,b=______,c=______;(2)若將數(shù)軸折疊,使得點A與點C重合,則點B與數(shù)______表示的點重合;(3)在(1)的條件下,數(shù)軸上的A,B,M表示的數(shù)為a,b,y,是否存在點M,使得點M到點A,點B的距離之和為6?若存在,請求出y的值;若不存在,請說明理由.(4)點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,求AB、AC、BC的長(用含t的式子表示).5、如圖,將一張長方形紙片按如圖方式折疊,猜想折痕EF,EG的位置關(guān)系,并說明理由.6、如圖,將各圖形補成關(guān)于直線l對稱的圖形.-參考答案-一、單選題1、A【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.利用軸對稱圖形的定義進行判斷即可.【詳解】解:A、是軸對稱圖形,故此選項符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、不是軸對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:A【點睛】此題主要考查了軸對稱圖形的定義,關(guān)鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.2、A【分析】利用軸對稱圖形的概念可得答案.【詳解】解:A、是軸對稱圖形,故此選項合題意;B、不是軸對稱圖形,故此選項不合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:A.【點睛】本題主要考查了軸對稱圖形,關(guān)鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.3、D【分析】根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】解:A、不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;B、不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;C、不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;D、是軸對稱圖形,符合題意.故答案為:D.【點睛】本題考查了軸對稱圖形,解題關(guān)鍵是掌握軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、B【分析】根據(jù)軸對稱圖形的概念(如果一個圖形沿著某條直線對折后,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)逐一判斷即可.【詳解】A不是軸對稱圖形,故該選項錯誤;B是軸對稱圖形,故該選項正確;C不是軸對稱圖形,故該選項錯誤;D不是軸對稱圖形,故該選項錯誤.故選:B.【點睛】本題主要考查軸對稱圖形,掌握軸對稱圖形的概念是解題的關(guān)鍵.5、B【分析】根據(jù)軸對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,進行逐一判斷即可.【詳解】解:A、是軸對稱圖形,不符合題意;B、不是軸對稱圖形,符合題意;C、是軸對稱圖形,不符合題意;D、是軸對稱圖形,不符合題意;故選B.【點睛】本題主要考查了軸對稱圖形的識別,熟知軸對稱圖形的定義是解題的關(guān)鍵.6、A【分析】根據(jù)軸對稱的定義去判斷即可.【詳解】∵吉是軸對稱圖形,∴A符合題意;∵祥不是軸對稱圖形,∴B不符合題意;∵如不是軸對稱圖形,∴C不符合題意;∵意不是軸對稱圖形,∴D不符合題意;故選A.【點睛】本題考查了軸對稱圖形,熟練掌握軸對稱圖形的定義即一個圖形沿著某條直線折疊,直線兩旁的圖形能完全重合,是解題的關(guān)鍵.7、B【詳解】解:選項A中的圖形不是軸對稱圖形,故A不符合題意;選項B中的圖形是軸對稱圖形,故B符合題意;選項C中的圖形不是軸對稱圖形,故C不符合題意;選項D中的圖形不是軸對稱圖形,故D不符合題意;故選B【點睛】本題考查的是軸對稱圖形的識別,軸對稱圖形的概念:把一個圖形沿某條直線對折,對折后直線兩旁的部分能夠完全重合;掌握“軸對稱圖形的概念”是解本題的關(guān)鍵.8、A【分析】根據(jù)剪下的圖形為等腰直角三角形,展開后為正方形,可知剪去的仍為正方形,由此即知答案.【詳解】由題意知,剪下的圖形為等腰直角三角形,展開后為正方形,所以剪去的為正方形,原圖為正方形,其還原的過程如下:故選:A【點睛】本題考查了圖形的折疊及裁剪,關(guān)鍵是根據(jù)折疊后裁剪的過程還原,對學生的想象能力有更高的要求.9、D【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】解:選項A、B、C均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形;選項D能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形;故選:D.【點睛】本題主要考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、A【分析】把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據(jù)定義逐一判斷即可得到答案.【詳解】解:選項A中的圖形不是軸對稱圖形,故A符合題意;選項B中的圖形是軸對稱圖形,故B不符合題意;選項C中的圖形是軸對稱圖形,故C不符合題意;選項D中的圖形是軸對稱圖形,故D不符合題意;故選A【點睛】本題考查的是軸對稱圖形的識別,掌握“軸對稱圖形的定義”是解本題的關(guān)鍵.二、填空題1、-3【分析】根據(jù)A與B表示的數(shù)求出AB的長,再由折疊后AB的長,求出BC的長,即可確定出C表示的數(shù).【詳解】解:∵A,B表示的數(shù)為?16,9,∴AB=9?(?16)=25,∵折疊后AB=1,∴BC==12,∵點C在B的左側(cè),∴C點表示的數(shù)為9-12=?3.故答案為:-3.【點睛】此題考查了數(shù)軸,折疊的性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.2、35【分析】由折疊可得BE平分,CE平分,再利用角的和差得到=180°-120°+10°=70°,進而可得答案.【詳解】解:由折疊可得BE平分,CE平分,∵∠AEB=60°,∴=2∠AEB=120°,∵,∴∴∠CED=.故答案為:35.【點睛】本題考查角的和差關(guān)系,軸對稱的性質(zhì),根據(jù)折疊的性質(zhì)得到BE平分,CE平分是解本題關(guān)鍵.3、60°【分析】由軸對稱的性質(zhì)可得,再根據(jù),求解即可.【詳解】解:由對稱的性質(zhì)可得,又∵,∴,故答案為.【點睛】此題考查了軸對稱的性質(zhì),以及鄰補角的性質(zhì),解題的關(guān)鍵是掌握軸對稱以及鄰補角的性質(zhì).4、王【分析】直接利用軸對稱圖形的定義得出答案.【詳解】解:“王”是軸對稱圖形,故答案為:王(答案為唯一).【點睛】本題考查了軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.解題的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.5、【分析】先根據(jù)平行線的性質(zhì)得到,結(jié)合已知∠EFG+∠EGD=150°,解得∠EGD=,再根據(jù)折疊的性質(zhì)解得,結(jié)合兩直線平行,同旁內(nèi)角互補得到,據(jù)此整理得,進而解題.【詳解】解:∠EFG+∠EGD=150°,∠EGD=折疊故答案為:.【點睛】本題考查折疊的性質(zhì)、平行線的性質(zhì)等知識,兩直線平行,同旁內(nèi)角互補,掌握相關(guān)知識是解題關(guān)鍵.6、65°【分析】作CD⊥平面鏡,垂足為G,交地面于D.根據(jù)垂線的性質(zhì)可得∠CDH+α=90°,根據(jù)平行線的性質(zhì)可得∠AGC=∠CDH,根據(jù)入射角等于反射角可得,從而可得夾角的度數(shù).【詳解】解:如圖,作CD⊥平面鏡,垂足為G,交地面于D.∴∠CDH+α=90°,根據(jù)題意可知:AG∥DF,∴∠AGC=∠CDH,,∴∠CDH=25°,∴α=65°.故答案為:65°.【點睛】本題考查了入射角等于反射角問題,解決本題的關(guān)鍵是掌握平行線的性質(zhì)、明確法線CG平分∠AGB.7、【分析】如圖,先求解再利用軸對稱的含義求解再利用平行線的性質(zhì)可得答案.【詳解】解:如圖,,則由對折可得:長方形,故答案為:【點睛】本題考查的是長方形的性質(zhì),鄰補角的定義,軸對稱的含義,平行線的性質(zhì),掌握以上知識是解題的關(guān)鍵.8、或2【分析】分兩種情況:當CE⊥AB時,設垂足為M,在Rt△AMC中,∠A=45°,由折疊得:∠ACD=∠DCE=22.5°,證明△BCM≌△DCM,得到BM=DM,證明△MDE是等腰直角三角形,即可得解;當CE⊥AC時,根據(jù)折疊的性質(zhì),等腰直角三角形的判定與性質(zhì)計算即可;【詳解】當CE⊥AB時,如圖,設垂足為M,在Rt△AMC中,∠A=45°,由折疊得:∠ACD=∠DCE=22.5°,∵等腰△ABC中,頂角∠A=45°,∴∠B=∠ACB=67.5°,∴∠BCM=22.5°,∴∠BCM=∠DCM,在△BCM和△DCM中,,∴△BCM≌△DCM(ASA),∴BM=DM,由折疊得:∠E=∠A=45°,AD=DE,∴△MDE是等腰直角三角形,∴DM=EM,設DM=x,則BM=x,DEx,∴ADx.∵AB=22,∴2xx=22,解得:x,∴BD=2x=2;當CE⊥AC時,如圖,∴∠ACE=90°,由折疊得:∠ACD=∠DCE=45°,∵等腰△ABC中,頂角∠A=45°,∴∠E=∠A=45°,AD=DE,∴∠ADC=∠EDC=90°,即點D、E都在直線AB上,且△ADC、△DEC、△ACE都是等腰直角三角形,∵AB=AC==22,∴ADAC=2,BD=AB﹣AD=(22)﹣(2),綜上,BD的長為或2.故答案為:或2.【點睛】本題主要考查折疊的性質(zhì),等腰直角三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),注重分類討論思想的運用是解題的關(guān)鍵.9、(1)(3)(4)【分析】如果一個圖形沿著一條直線對折后,直線兩旁的部分完全重合,這樣的圖形叫做軸對稱圖形,依據(jù)定義即可作出判斷.【詳解】解:線段的對稱軸是其垂直平分線,圓的對稱軸是其直徑所在的直線,正方形的對稱軸是其對角線所在直線和對邊中點的連線,(1)(3)(4)是軸對稱圖形,只有等腰三角形和等腰梯形是軸對稱圖形,(2)(5)不一定是軸對稱圖形,故一定是軸對稱圖形的有(1)(3)(4).故答案為:(1)(3)(4).【點睛】本題主要考查了軸對稱圖形的定義,解題的關(guān)鍵是正確確定軸對稱圖形的對稱軸.10、61°【分析】根據(jù)折疊性質(zhì)得出∠DED′=2∠DEF,根據(jù)∠1的度數(shù)求出∠DED′,即可求出∠DEF的度數(shù),進而得到答案.【詳解】解:由翻折的性質(zhì)得:∠DED′=2∠DEF,∵∠1=58°,∴∠DED′=180°-∠1=122°,∴∠DEF=61°,又∵AD∥BC,∴∠EFB=∠DEF=61°.故答案為:61°.【點睛】本題考查了平行線的性質(zhì),翻折變換的性質(zhì),鄰補角定義的應用,熟記折疊的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)見解析;(2,4);(2)12【分析】(1)根據(jù)關(guān)于x軸對稱的點的坐標特征寫出頂點A1,B1,C1的坐標,然后連線即可;(2)作出圖象可得四邊形為等腰梯形,根據(jù)梯形面積公式求解即可.【詳解】解:(1)先找出對稱點A1(0,2),B1(2,4),C1(4,1),依次連接,如圖,△A1B1C1為所作;∴B1(2,4);(2)如圖所示,四邊形為等腰梯形,,,,∴,故答案為:12.【點睛】本題考查了作軸對稱圖形:先找對稱點然后依次連接即可,結(jié)合圖象求解是解題關(guān)鍵.2、∠AFB=40°.【分析】由題意易得∠ADC=90°,∠ACB=80°,然后可得,進而根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:∵AD⊥BE,∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,∵AE是∠MAC的平分線,BF平分∠ABC,∴,又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,∴∠AFB=∠MAE﹣∠ABF=.【點睛】本題主要考查三角形外角的性質(zhì)及角平分線的定義,熟練掌握三角形外角的性質(zhì)及角平分線的定義是解題的關(guān)鍵.3、(1)AC+AD=BC;(2)證明見解答過程;【分析】(1)把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)三角形的外角性質(zhì)得到∠A′DB=∠B,根據(jù)等腰三角形的判定定理得到A′D=A′B,結(jié)合圖形計算,證明結(jié)論;(2)將AD沿AC翻折,使D落在AB上的D′處,連接CD′,根據(jù)全等三角形的性質(zhì)得到CD=CD′=BC,∠D=∠AD′C,進而證明結(jié)論;【詳解】(1)解:AC+AD=BC,理由如下:如圖,把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,∵∠ACB=90°,∠B=30°,∴∠A=90°-∠B=60°,由折疊的性質(zhì)可知,CA′=CA,A′D=AD,∠CA′D=∠A=60°,∵∠B=30°,∴∠A′DB=∠CA′D-∠B=30°,∴∠A′DB=∠B,∴A′D=A′B,∴AD=A′B,∴BC=CA′+A′B=AC+AD;(2)證明:如圖,將AD沿AC翻折,使D落在AB上的D′處,連接CD′,則△ADC≌△AD′C,∴CD=CD′=BC,∠D=∠AD′C,∴∠B=∠BD′C,∵∠BD′C+∠AD′C=180°,∴∠B+∠D=180°.【點睛】本題考查的是翻折變換的性質(zhì)、等腰三角形的性質(zhì),掌握翻折變換的性質(zhì)是解題的關(guān)鍵.4、(1)-2,1,7;(2)4;(3)存在這樣的點M,對應的y=2.5或y=-3.5;(4)3t+3,5t+9,2t+6.【分析】(1)根據(jù)非負數(shù)的性質(zhì)得出,解方程可求,根據(jù)數(shù)b是最小的正整數(shù),可得b=1即可;(2)先求出折點表示的是,然后點B到折點的距離,利用有理數(shù)加法即可出點B對稱點;(3)由題意知AB=3,點M在AB之間,AM+BM=3<6,分兩種情況討論M在AB之外的情況第一種情況,當M在A點左側(cè)時,由MA+MB=MA+MA+AB=6,第二種情況,當M在B點右側(cè)時由MA+MB=MB+MB+AB=6,解方程即可;(4)分別寫出點A、B、C表示的數(shù)為,用含t的代數(shù)式表示出AB、AC、BC即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論